# Young Stellar Object with GRAVITY and perspective of GRAVITY+





Karine PERRAUT on behalf the GRAVITY Collaboration



## **Close-in low-mass planets**





Current population of known exoplanets:

- Wide diversity in nature and architecture
- Many close-in low-mass planets revealed by Kepler
- ⇒ Origin of diversity? Which processes determine the final outcome of planetary systems?
- ⇒ Which initial conditions would favor compact, short-period multi-planet systems in the inner disk, at a distance ranging from 0.1 au to a few au from the central star?

[Mishra+2023; Batygin & Morbidelli 2023]

[Blinova+2016] [Batygin&Laughlin 2015]

## Exploring the birthplace of the close-in planets: The protoplanetary disks



- Material reservoir from which star and planets are formed.
- Planet formation when the YSO still actively accreting from its circumstellar disk.
- Accretion of disk material impacts star's properties and evolution
- High-energy radiation drastically affects physical and chemical evolution of the proto-atmosphere of nascent planets
- Star formation, planet formation and disk evolution processes occur simultaneously and influence each other
- Brief (a few Myr) but foundational mutual influences



Observe **structures** and **evolution** of protoplanetary disks <u>while</u> planet formation is happening

## Probing the first au with GRAVITY







Zooming-in to study:

- Inner rim of the dusty disk
- Star-disk interaction region





## Probing the first au with GRAVITY...



... within a multi-technique and multi-λ approach (visible/NIR/MIR, interferometry/spectroscopy/spectropolarimetry, ...)



## The GRAVITY YSO Large Program

#### Aims.

- Use the 4 telescopes, the sensitivity and accuracy of GRAVITY to investigate the findings of the pioniering works [Millan-Gabet+2001; Eisner+2005; 2007; 2014; Monnier & Dullemond 2010; Kraus 2015] within a statistical approach.
- Spatially resolve the dust emission and the morphology of the innermost regions of the disk (dust sublimation front, asymmetries, ...)
- Connect the inner disk's morphology and structures to those of the outer disk
- Use the spectral resolution (R ~4000) to study the emitting regions and the kinematics of the hot (HI Brγ) and warm (CO) gas

GRAVITY Coll., 2017, A&A, 608, 78 GRAVITY Coll., 2019, A&A, 632, 53 GRAVITY Coll., 2020, A&A, 635, 12 GRAVITY Coll., 2020, Nature, 584, 546 GRAVITY Coll., 2020, A&A, 642, 162 GRAVITY Coll., 2021, A&A, 645, 50 GRAVITY Coll., 2021, A&A, 648, 37 GRAVITY Coll., 2021, A&A, 654, 97 GRAVITY Coll., 2021, A&A, 655, 73 GRAVITY Coll., 2021, A&A, 655, 112 GRAVITY Coll., 2023, A&A, 669, 59 GRAVITY Coll., 2023, A&A, 674, 203 GRAVITY Coll., 2024, A&A, 682, 165 GRAVITY Coll., 2024, A&A, 684, 43 GRAVITY Coll., 2024, A&A, 684, 200 GRAVITY Coll., 2024, A&A, 690, 123 GRAVITY Coll., 2024, A&A, 684, 200





 $[^{\sim} 1-2 M_{\odot}]$ 

## **Revisiting the Radius-Luminosity relation**





Consistent with passively irradiated disk with optically thin cavity (dust sublimation)



Light scattering at low L\*? [Pinte+2008]
Scatter at large luminosities: backwarming, accretion, self-shielding?



### The link between inner and outer disk



Statistical study on 20 disks with dust-depleted cavities: 6 with inner/outer disk misalignment

Bohn+2022

#### GRAVITY K-band inner disk Aligned SPHERE shadows





Warps?
Massive companion?
Outcome of earlier stages?

## Imaging sub-structures in the inner regions



#### Outer disk:

- Lots of substructures
- Temporally variable

**Indirectly map the innermost regions** that are as diverse and as variable as the outer ones

#### **SPHERE (J-band)**





Vortex? [Varga+2021]
Second generation dust? [Chen+2019]
Variable shadowing? [Kobus+2020]

**GRAVITY Coll.: Sanchez-Bermudez+2021** 

## Temporal variability in the innermost regions















R<sub>Dusty ring</sub> ~ 1.3 au

**GRAVITY Coll.: Ganci+2024** 

Large vortex at ~1 au triggered by hydrodynamical instabilities

#### **GRAVITY (Bry)**







Asymmetric disk wind?
Sub-stellar/planetary accreting companion?

## Accretion-ejection in the star-disk interaction region



Bry – 2166 nm









dust wall

Inner

gas disk



Hot continuum **Broad emission lines** emission ( $T \approx 8,000 \text{ K}$ );  $(T \approx 10^4 \text{ K})$ some narrow lines; X-rays?

[From Hartmann+2016]

## Probing the magnetospheric accretion in TW Hya





#### **GRAVITY** interferometry







**GRAVITY Coll.: Garcia-Lopez+2020** 

#### **ESPaDOnS spectro-polarimetry**



[Donati+2011]



## Probing the magnetospheric accretion in TW Hya





#### **GRAVITY** interferometry





#### **Radiative Transfer accretion model**



**GRAVITY Coll.: Garcia-Lopez+2020** 

#### **ESPaDOnS spectro-polarimetry**



[Donati+2011]



## Accretion-ejection processes in strong accretors



#### S CrA N



GRAVITY Coll.: Nowacki+2024





 $\delta R_{wind}$ Tessore+2021 **RU** Lup Tessore+2023 Wojtczak+2024 1.75 1.25 **GRAVITY data**  ${\rm km}~{\rm s}^{-1}$ Half flux radius Modelling Hybrid model II RU Lup 2021 0.15 忌 0.10 0.05 16  $km s^{-1}$ 

## Opportunities of GRAVITY+ for YSOs









SOC: J. Bouvier – P. Caselli – M. Flock – L. Labadie (co-chair) – K. Perraut (chair) – T. Ray – P. Schilke – S. Spezzano – R. van Boekel

Invited speakers: G. Bourdarot – C. Dougados – S. Grant L. Perez – S. Takasao – R. Teague

[The Messenger 189, dec. 2022; GRAVITY+Coll, 2022; Abuter+2024] [Nowak+2024; Berdeu+2024]

## From GRAVITY to GRAVITY+



#### What will not change:

- Number of combined telescopes [4]
- Baselines' length and orientation [(u,v) plane]
- Spectral range [K band]

#### What will change:

- Sensitivity
  - FT limiting magnitude:  $K = 10 \Rightarrow 13$
  - AO limiting magnitude:  $G = 12 \Rightarrow 18$
- Sky coverage All Galactic Plane region observable
- Accuracy

#### State-of-the-art adaptive optics



- New wavefront sensors
- NGS and LGS modules
- New deformable mirrors

#### Off-axis (30") fringe tracking





## Different Star Forming Regions

Thanks to LGS and off-axis fringe tracking:

- Less biaised samples
- Demographic studies
- Test advanced models

| SFR       | Nb of sources<br>[catalog]  | GRAVITY | GRAVITY+<br>NGS | GRAVITY+<br>LGS |
|-----------|-----------------------------|---------|-----------------|-----------------|
| Cr A      | <b>35</b> [Cazzoletti+2019] | 8       | 8               | 26 (74%)        |
| Ser       | <b>291</b> [Erickson+2015]  | 5       | 7               | 231 (79%)       |
| Up. Sco   | <b>567</b> [Luhman+2020]    | 67      | 77              | 399 (70%)       |
| Tau       | <b>435</b> [Galli+2019]     | 151     | 157             | 381 (87%)       |
| Cha + Lup | <b>168</b> [Mulders+2017]   | 56      | 57              | 146 (87%)       |
| TOTAL     | 1496                        | 287     | 306             | 1183 (79%)      |







• Access to lower mass stars and to a larger sample of high-mass YSOs, including extragalactic as e.g. in the magellanic clouds

- Class-I sources will be observable for the first time by optical interferometry:
  - Younger sources
  - Different regime of accretion
  - Stronger and more complex magnetic fields



| Total        | 53       |
|--------------|----------|
| GRAVITY      | 7        |
| GRAVITY+     | 7        |
| GRAVITY+_LGS | 28 (53%) |

[Connelley+2010]

## Monitor accretion-ejection in T Tauris



Monitoring over rotation periods to better probe the origin of the accretion flows



[Tessore+2023]



- « FAINT » mode to probe other tracers than Brγ (He I, Na, ...)
- Better overlap with other instruments (SPIRou, JWST/MIRI, ...)

## Take away messages



#### GRAVITY YSO Large Program – an invaluable homogeneous data set

- √ Demographic studies
- √ Variability follow-up
- √ Test advanced disk structure and accretion/ejection models

Exciting times to come with GRAVITY+ and LGS

Interest of multi-technique and multi-wavelength campaigns to probe different scales

VLTI suite, JWST, ALMA, IR spectroscopy, spectropolarimetry (SPIRou + ESPaDOnS in VISION), ELT

To be developed in the ANR IRYSS project (2024-2028)





[Grant,.., Nowacki, Perraut+2024]

| Parameter                            | VLTI-GRAVITY Models                                                                               |                                                              |  |
|--------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--|
| Farameter                            | Binary only                                                                                       | Binary + disk around A                                       |  |
| ΔRA [mas]                            | $57.39^{+0.18}_{-0.17}$                                                                           | $57.38 \pm 0.22$                                             |  |
| ΔDec [mas]                           | $-32.35 \pm 0.34$                                                                                 | $-32.38^{+0.41}_{-0.42}$                                     |  |
| $\rho$ [mas]                         | $65.9 \pm 0.5$                                                                                    | $65.9 \pm 0.6$                                               |  |
| $F_A$                                | $0.66 \pm 0.03$                                                                                   | $0.61^{+0.04}_{-0.06}$                                       |  |
| $F_B$                                | $0.34 \pm 0.03$                                                                                   | $0.28 \pm 0.04$                                              |  |
| $F_{disk}$                           | -                                                                                                 | $0.11 \pm 0.07$                                              |  |
| HWHM [mas]                           | -                                                                                                 | $1.0 \pm 0.6$                                                |  |
| HWHM [au]                            | -                                                                                                 | $0.14 \pm 0.09$                                              |  |
| $\chi_r^2$                           | 8.38                                                                                              | 5.05                                                         |  |
|                                      | H <sub>2</sub> O (~500-1000 K)<br>HCN<br>CO <sub>2</sub> ?<br>R <sub>CO</sub><br>R <sub>H2O</sub> | C <sub>2</sub> H <sub>2</sub> ?                              |  |
| DF Tau A  66 mas 9 au (not to scale) | HCN<br>CO₂?<br>Rco I                                                                              | CO <sub>2</sub> ?                                            |  |
| 66 mas<br>9 au                       | HCN<br>CO <sub>2</sub> ?<br>Rco<br>R <sub>H2O</sub>                                               | CO <sub>2</sub> ? R <sub>ALMA</sub> H <sub>2</sub> O(~200 K) |  |