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ABSTRACT

An ever-growing observational aggregate of extrasolar planets has revealed that systems of planets that reside in or near mean-motion
resonances are relatively common. While the origin of such systems is attributed to protoplanetary disk-driven migration, a qualitative
description of the dynamical evolution of resonant planets remains largely elusive. Aided by the pioneering works of the last century,
we formulate an approximate, integrable theory for first-order resonant motion. We utilize the developed theory to construct an
intuitive, geometrical representation of resonances within the context of the unrestricted three-body problem. Moreover, we derive
a simple analytical criterion for the appearance of secondary resonances between resonant and secular motion. Subsequently, we
demonstrate the onset of rapid chaotic motion as a result of overlap among neighboring first-order mean-motion resonances, as well
as the appearance of slow chaos as a result of secular modulation of the planetary orbits. Finally, we take advantage of the integrable
theory to analytically show that, in the adiabatic regime, divergent encounters with first-order mean-motion resonances always lead
to persistent apsidal anti-alignment.
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1. Introduction

The continued search for extrasolar planets around nearby stars
has proven to be a goldmine of discoveries in numerous sub-
fields of planetary astrophysics. Among the disciplines that have
benefited the most is the study of orbital dynamics, as the ag-
gregate of known planetary system architectures has grown im-
mensely. Importantly, the observations collectively suggest that
the orbital structure of the solar system is a singular example
among numerous possible dynamical states. Indeed, orbital con-
figurations that are quite unlike our own exist. Within the cur-
rently available observational collection, of particular interest is
the class of systems that contains planets that reside in or near
mean-motion resonances or, loosely speaking, display integer
commensurabilities among the orbital periods.

The range of parameter space occupied by resonant plan-
ets is remarkably vast. Long-term radial velocity monitoring
has revealed that giant planets occasionally reside in mean mo-
tion resonances at orbital distances exceeding ∼1 AU (Wright
et al. 2011). At the same time, searches aimed at transiting
exoplanets (the Kepler mission in particular) have shown that
(near-)resonances are quite common among low-mass planets
that reside in close proximity to their host stars (Fabrycky et al.
2012). Furthermore, it has been proposed that the giant planets
of the solar system once occupied a resonant state (Masset &
Snellgrove 2001; Morbidelli et al. 2007), before undergoing a
transient dynamical instability that drove the orbits to their cur-
rent locations (Batygin & Brown 2010; Levison et al. 2011).

The prevalence of mean motion commensurabilities among
planets is probably not coincidental and is likely to be a re-
sult of a physical mechanism. Indeed, it is believed that res-
onances congregate at an epoch in the dynamical evolution
when the protoplanetary nebula is still present. Specifically,

interactions between newly formed planets and the gaseous disk,
into which they are embedded, leads to a time-irreversible ex-
change of angular momentum that results in planetary migration
(Goldreich & Tremaine 1980; Lin et al. 1996; Crida et al. 2007).
Although the particular regime (i.e., rate, direction) of the migra-
tion depends upon the planetary mass (Armitage 2010), as well
as the thermodynamic properties of the disk (Paardekooper &
Papaloizou 2009; Bitsch & Kley 2011), occurrences where mi-
gration among planetary pairs is slow and convergent are thought
to be common (Terquem & Papaloizou 2007). In such cases,
provided that the disk in question is not overwhelmingly tur-
bulent (Adams et al. 2008; Cresswell & Nelson 2008; Ketchum
et al. 2011) and the planetary orbits are nearly circular, capture
into resonance is essentially guaranteed (Henrard 1982b; Peale
1986).

An example of resonant capture among giant planets, result-
ing from disk-dirven migration is shown in Fig. 1. Specifically,
the figure shows Jupiter and Saturn locked in a 3:2 mean motion
resonance, having opened a mutual gap in the protoplanetary
disk. The figure depicts a reproduction of the results of Masset
& Snellgrove (2001) and Morbidelli & Crida (2007), where all
simulation parameters were adopted from the latter study.

It is noteworthy that gaseous protoplanetary disks are not the
only environments where migrating planets can encounter mean
motion resonances. Massive objects embedded in debris disks
often undergo planetesimal-driven migration (Fernandez & Ip
1984; Murray et al. 1998; Kirsh et al. 2009). In fact, Malhotra
(1995) proposed exactly this process for the origin of the 3:2
mean motion resonance between Neptune and Pluto.

Yet another setting where resonant encounters are common
is the orbital region occupied by planetary satellites (Peale 1986,
1999). In the context of the planetary satellite problem, mi-
gration is usually forced by tidal interactions with the host
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Fig. 1. Jupiter and Saturn in a resonant configuration. The figure shows
a snapshot of the orbital state of Jupiter and Saturn, embedded into the
solar nebula. The planets are locked in a 3:2 mean motion resonance.
By virtue of carving out a mutual gap in the gaseous disk, the plane-
tary migration direction is reversed to point outwards. The locations of
the planets as well as their orbits are labeled accordingly and the back-
ground color represents the logarithm of the gas density. This simulation
is a reproduction of the numerical experiments performed by Masset &
Snellgrove (2001); Morbidelli & Crida (2007). The snapshot shows the
system at a time when Jupiter is at 4.3 AU.

planet (Goldreich 1963; Goldreich & Soter 1966). An oft-quoted
example of a tidally assembled system is the Laplace resonance
of the Galilean moons (Goldreich & Soter 1966; Henrard 1983).
Systems of resonant planets on orbits that are close to their host
stars also interact with the star tidally. However, in such systems,
the interplay between the resonant dynamics and the dissipative
forces results in a repulsion of the orbits (Batygin & Morbidelli
2013; Lithwick & Wu 2012), rather than a convergence towards
nominal commensurability.

Quite contrary to the examples described above, encounters
with mean motion resonances by divergently migrating planets
can never result in capture (Henrard 1991; Murray & Dermott
1999). Instead, passage through resonance leads to an impulsive
excitation of the orbital parameters. As an example, such a pro-
cess is thought to be responsible for the mutual inclinations of
the Uranian satellites (Peale 1988; Tittemore & Wisdom 1990).
Furthermore, our own Jupiter and Saturn may have once encoun-
tered the 2:1 mean motion resonance, jumpstarting the transient
dynamical instability of the solar system that helped shape the
Kuiper belt (Tsiganis et al. 2005; Levison et al. 2008; Batygin
et al. 2011).

The long-term evolution of resonant objects can be quite
complex. In fact, it is now well known that overlap of resonances
gives rise to chaos (Chirikov 1979; Wisdom 1980). In turn, this
can result in orbital instabilities. Indeed, the process of chaotic
clearing of resonant orbits is illustrated by the lack of objects in
the Kirkwood gaps of the Asteroid belt (Wisdom 1983; Henrard
& Caranicolas 1990; Murray & Holman 1997).
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Fig. 2. Mass ratio of resonant exoplanets and some solar system satellite
pairs. Only well-characterized systems (Wright et al. 2011) are listed.
The size of each bubble is indicative of the orbital distance of the inner
orbit in units of the central body radii. Systems depicted by blue circles
are those with a more massive inner object. Systems represented with
green circles are those with a more massive outer object. This figure
clearly shows that the restricted formalism of the three-body problem is
inapplicable in numerous settings of astrophysical interst.

The majority of the work on the chaotic dynamics of mean
motion resonances has found its application in the study of the
orbital evolution of small bodies with negligible masses (e.g.
Asteroids, Kuiper Belt objects, (ir)regular satellites) (Nesvorný
et al. 2002; Morbidelli et al. 2008), although chaotic diffusion of
planetary orbits in the outer solar system has also received some
attention (Murray & Holman 1999). With a growing aggregate of
detected extrasolar planets, (near-)resonant planetary pairs char-
acterized by secondary mass-ratios close to unity have become
common. This implies an expanded tally of objects to which the
well-studied restricted formalism, where one of the three bodies
is taken to be mass-less, is inapplicable. In particular, Fig. 2 de-
picts the mass ratios of the currently known, well-characterized
first-order resonant extrasolar planets (Wright et al. 2011) as
well as some solar system examples. The sizes of the circles are
representative of the planetary orbital radii in units of the pri-
mary’s physical radius. Green circles denote resonant pairs with
a more massive outer planet while blue circles denote systems
with a more massive inner planet.

Influenced by the emergence of observational detections,
a handful of authors have studied the global resonant dynam-
ics of the unrestricted three-body problem (Rivera et al. 2005;
Callegari & Yokoyama 2007; Michtchenko et al. 2008). While
quantitatively precise, the latter studies are generally tailored
to particular systems, characterized by specific resonances and
mass ratios. This renders the translation of the results to other
systems and the acquisition of an overall understanding of the
motion a difficult task. Indeed, a more physically intuitive and
broadly applicable picture of resonant dynamics is desirable.

Here, we shall set out to draw such a picture. As such,
the analytical characterization of the global first-order resonant
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dynamics, is the primary purpose of this work.The paper is or-
ganized as follows. In the following section, we formulate a
fully analytical, integrable treatment of resonant phenomena.
Using the approximate theory, we construct surfaces of section
that prove useful as a visual representation of the resonant mo-
tion. In Sect. 3, we consider the onset of chaos via overlap of
neighboring resonances as well as the incorporation of higher-
order secular perturbations into the developed framework. In
Sect. 4, we apply the constructed formalism to divergent reso-
nant encounters and examine the characteristic features of post-
encounter dynamical states. We summarize and discuss our re-
sults in Sect. 5.

2. Resonant motion

2.1. An integrable approximation

Our first aim is to construct an integrable approximation to the
first-order resonant motion (i.e. the orbital period ratio P1/P2 ≈

k/(k−1), k ∈ Z) of two massive secondary bodies with masses m1
and m2, which orbit a much more massive (M � m1,2) primary.
By convention, we shall take the subscripts 1 and 2 to denote
the inner and outer orbits respectively. The exact Hamiltonian,
H which governs the gravitational three body problem is char-
acterized by six degrees of freedom. Specifically, the canonical
heliocentric formulation of H reads (Poincaré 1902; Laskar &
Robutel 1995; Morbidelli 2002):

H =
M + m1

2M
p2

1

m1
+

M + m2

2M
p2

2

m2
−
GMm1

r1

−
GMm2

r2
+

p1 p2

M
− G

m1m2

∆12
(1)

where G is the gravitational constant, p is the barycentric lin-
ear momentum, r1, r2 are the distances between the primary and
the secondaries while ∆12 is the distance between the planets.
Today, the availability of numerical tools for integration of the
Hamiltonian (1) (Wisdom & Holman 1991; Duncan et al. 1998;
Chambers 1999) allows for a prompt and precise realization of a
given system’s orbital evolution. However, any such realization
provides a scarce theoretical basis for the characterization of the
dynamics. Moreover, as was first pointed out by Poincaré (1902),
such solutions may exhibit chaotic motion further obscuring can-
did interpretation. Consequently, rather than working with the
Hamiltonian (1) directly, it is sensible to turn to the classical
perturbation methods developed over the last four centuries, in
search of a suitable approximation to the Hamiltonian (1).

Throughout the following derivation, we shall be aided by
numerous preceding contributions to the study of resonance in
celestial mechanics. Specifically, we shall follow the pioneer-
ing work of Peale (1976) and Sessin & Ferraz-Mello (1984).
The calculation will be greatly simplified by a reducing trans-
formation (see Henrard et al. 1986; Wisdom 1986) and the fi-
nal Hamiltonian will closely resemble the second fundamental
model for resonance (Henrard & Lemaitre 1983).

It is useful to begin, (without fear of overstating the obvious)
by pointing out that the combination of the first and third as well
as second and fourth terms in Eq. (1) govern the Keplerian mo-
tion of the planets. It can be easily shown (Murray & Dermott
1999; Morbidelli 2002) that in terms of orbital elements, this
Keplerian part of the Hamiltonian can be written as follows:

Hkep = −
GMm1

2a1
−
GMm2

2a2
, (2)

where a is the semi-major axis. The remaining terms in the
Hamiltonian (1) govern the planet-planet interactions and are
much smaller in magnitude. Accordingly, it is often called the
disturbing function, since it provides small perturbations to the
integrable Hamiltonian (2) that are still important in the long
term.

A qualitative analysis of the dynamics can be performed by
expanding the disturbing function as a Fourier series in the or-
bital angles and a power series of the planetary eccentricities
and inclinations (Laskar & Robutel 1995; Laskar & Boué 2010).
Accordingly, this procedure allows for the identification of res-
onant terms, that is, harmonics that vary on a timescale much
longer than the orbital timescale in the vicinity of exact com-
mensurability. While such terms are dynamically important and
should be retained in the Hamiltonian, short-periodic terms (i.e.
those that vary on an orbital timescale) can be readily averaged
over and dropped from the Hamiltonian (Murray & Dermott
1999).

It is noteworthy that in addition to short-periodic and reso-
nant terms, the disturbing function also contains secular terms
which do not depend on the mean longitudes of the planets. The
leading secular terms are of order O(e2, i2), where e and i are
the eccentricity and inclination respectively. For the purposes of
the construction of a first-order resonant theory, we shall neglect
them, along with all resonant terms of order greater than unity in
e and i. Additionally, we shall only retain terms that are linear in
planetary masses. However, as will be shown in the subsequent
sections, these higher-order terms play a crucial role in the onset
of chaotic motion.

In accord with the above-mentioned linear expansion of the
disturbing function, we can approximate the Hamiltonian (1) as

H ' Hkep +Hres + O(e2, i2), (3)

where the k : k−1 resonant perturbation to the Keplerian motion
reads:

Hres = −
Gm1m2

a2

(
f (1)
res e1 cos(kλ2 − (k − 1)λ1 −$1)

+ f (2)
res e2 cos(kλ2 − (k − 1)λ1 −$2)

)
. (4)

Following conventional notation,$ denotes the longitude of per-
ihelion and λ =M+$ is the mean longitude,M being the mean
anomaly. The quantities f (1)

res and f (2)
res are of order unity to within

a factor of a few and (weakly) depend on the semi-major axis
ratio (a1/a2) only. Their values are tabulated in numerous ref-
erences and can be easily evaluated numerically with the aid of
computer algebra (see for example Callegari & Yokoyama 2007;
Laskar & Boué 2010).

At the expense of working in a noninertial reference frame,
we had to introduce the indirect term, p1 p2/M, into the disturb-
ing function that accounts for fixing the origin on the central
body (Laskar & Boué 2010). However, this correction is trivial,
given that all indirect terms in Hres corresponding to the same
harmonics have the same dependence on the actions as the di-
rect ones, meaning that the indirect terms can be accounted for
simply by modifying the coefficients fres.

Although the functional form of the simplified Hamiltonian
is given, Keplerian orbital elements do not form a canonically
conjugated set. Thus to make further progress, we convert to
Poincaré action-angle variables defined as:

Λ = µ
√
G(M + m)a, λ =M +$, (5)

Γ = Λ(1 −
√

1 − e2) ≈ Λ e2/2, γ = −$, (6)
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where µ = mM/(M + m) ' m is the reduced mass. In terms of
the Poincaré variables, the Hamiltonians, Hkep and Hres take on
the following forms respectively (Murray & Dermott 1999):

Hkep = −
G2M2m3

1

2Λ2
1

−
G2M2m3

2

2Λ2
2

, (7)

Hres = −
G2Mm1m3

2

Λ2
2

 f (1)
res

√
2Γ1

Λ1
cos(kλ2 − (k − 1)λ1 + γ1)

+ f (2)
res

√
2Γ2

Λ2
cos(kλ2 − (k − 1)λ1 + γ2)

 . (8)

Although we did not explicitly assume coplanar orbits, the
linear expansion of the disturbing function contains no terms
that depend on the longitudes of the ascending node (the third
Poincaré angle), or the orbital inclinations (related to the third
Poincaré action). This renders these quantities integrals of mo-
tion. Therefore, it is evident that the number of degrees of free-
dom of H has been reduced to four (although the distinct pres-
ence of only two harmonics in Eq. (8) suggests that H can be
reduced to a two degrees of freedom system with ease).

Because we are interested in near-commensurate planetary
motion, it is sensible to expand the Keplerian Hamiltonian
around the nominal resonant location. Carrying out the expan-
sion to second order in δΛ = Λ − [Λ], where [Λ] is the nominal
resonant value of Λ, we have:

−
G2M2m3

2Λ2 ' −
G2M2m3

2[Λ]2 +
G2M2m3

[Λ]3 δΛ −
3G2M2m3

2[Λ]4 δΛ2. (9)

Substituting the definition of δΛ into Eq. (9) and dropping the
dynamically unimportant constant terms, Hkep takes on the fol-
lowing remarkably simple form:

Hkep = 4([n]1Λ1 + [n]2Λ2) −
3
2

(
[h]1Λ2

1 + [h]2Λ2
2

)
. (10)

Here, [n] =
√
GM/[a]3 is the nominal mean motion and [h] =

[n]/[Λ] = 1/(m[a]2). In accord with the above approximation,
we shall also evaluate Hres at [Λ], as it is already of order O(e).
Indeed, this step is relevant to the evaluation of the resonant
strengths, as the coefficients fres can now be considered truly
constant.

In the limit of very small eccentricities and semi-major
axes ratios exceeding the nominal resonant value (that is, as-
suming that the system remains close to the (pseudo-)resonant
equilibrium point, which is in turn taken to be close to the
origin of the phase-space portrait), the dynamics governed by
Hamiltonians (10) and (8) can be treated linearly. An analysis of
this kind has recently been performed by Batygin & Morbidelli
(2013) and the resulting equations were used to study the res-
onant evolution of close-in planets under the effect of tides. In
this work, we wish to provide a more general picture of reso-
nant motion that is not limited to the vicinity of any equilibrium
point. Consequently, here, we retain the nonlinear coupling of
the actions inherent to (8).

The functional form of the resonant harmonics can be simpli-
fied considerably by employing a canonical contact transforma-
tion of variables, arising from the following generating function
of the second kind (Sessin & Ferraz-Mello 1984):

F2 = λ1K + (kλ2 − (k − 1)λ1)Θ. (11)

An application of the transformation equations Λ = ∂F2/∂λ
yields new action-angle variables:

K = Λ1 +
k − 1

k
Λ2, κ = λ1,

Θ = Λ2/k, θ = kλ2 − (k − 1)λ1. (12)

Upon substitution of the new variables into the Hamiltonian
and utilizing the resonant relationship (k − 1)[n]1 = k[n]2, the
Keplerian Hamiltonian becomes

Hkep = 4[n]1K + 3[h]1(k − 1)KΘ

−
3
2

(
[h]1(k − 1)2 + [h]2k2

)
Θ2 −

3
2

[h]1K
2. (13)

Meanwhile, the resonant contribution toH now takes the form:

Hres = −α
√

2Γ1 cos(γ1 + θ) − β
√

2Γ2 cos(γ2 + θ), (14)

where

α =
G2Mm1m3

2

[Λ]2
2

f (1)
res
√

[Λ]1
,

β =
G2Mm1m3

2

[Λ]2
2

f (2)
res
√

[Λ]2
· (15)

Note that κ is no longer present in H . Thus, K is now a con-
stant of motion and the number of degrees of freedom ofH has
been reduced to three. Physically, the conservation of K arises
from the fact that the resonant Hamiltonian depends on the semi-
major axis ratio rather than the semi-major axes themselves (re-
call that K ∝ Λ ∝

√
a). Accordingly, Michtchenko et al. (2008)

have dubbed K a “scaling parameter” (see also their discussion
of K’s significance and its relationship to the behavior of the
semi-major axes outside the resonant domain).

The utility of K can be illustrated intuitively by expressing
it in a dimensionless form:

K

Λ2
=

m1

m2

√
a1

a2
+

k − 1
k
· (16)

For a given mass ratio, we can choose a nominal semi-major
axis ratio, [a]1/[a]2 and obtain the value ofK/[Λ]2 accordingly.
Although K is simply a constant of motion and can in princi-
ple take on arbitrary values, without loss of generality, we can
choose [Λ]2 = 1, thereby defining a natural value of K . In this
sense, the actual value of K is simply representative of the units
in which the semi-major axes are measured. Once the value ofK
is fixed, both planetary semi-major axes, a1 and a2 are unequiv-
ocally defined given their ratio, a1/a2.

The conservation of K is of additional importance, as it
yields the location of nominal mean motion, [n], around which
we have chosen to expand the Keplerian Hamiltonian (7). In the
unrestricted problem, the semi-major axes of both planets de-
viate away from nominal commensurability during a resonant
cycle. The extent of such deviation is dependent on the plan-
etary masses. Thus, it would seem that the nominal locations
of the semi-major axes are not defined a priori. This issue is
remedied by the fact that K encapsulates the planetary mass ra-
tio. Consequently, given an (observed) pair of semi-major axes,
the conserved value of K can be used to compute their nominal
counterparts by setting a2 = ((k − 1)/k)2/3a1 in Eq. (16).

For further calculations, we shall drop the first and last terms
in the Hamiltonian (13) because they are constant. Doing so does

A28, page 4 of 20



K. Batygin and A. Morbidelli: First order resonances

not change the overall picture of the dynamics with the excep-
tion of the eliminated ability to derive the time evolution of the
individual mean longitudes, λ1 and λ2. However, all other infor-
mation, including the behavior of the resonant critical arguments
in Eq. (8), is retained despite this simplification.

The Hamiltonians (13) and (14) are equivalent to (in fact,
a trivial transformation away from) those considered by Sessin
& Ferraz-Mello (1984). Through a rather involved calculation,
utilizing the perturbation method devised by Hori (1966), these
authors demonstrated the integrability of the first-order resonant
motion. In a subsequent effort, aimed primarily at the elliptic re-
stricted three-body problem, Henrard et al. (1986) and Wisdom
(1986) greatly simplified the Sessin & Ferraz-Mello (1984) so-
lution by introducing a canonical transformation that explicitly
identifies a novel constant of motion. Here, we shall follow the
latter approach.

Turning our attention to the resonant contribution to H , let
us transform the remaining Poincaré variables (Γ, γ) to mixed
secular cartesian coordinates (Murray & Dermott 1999)

x1 =
√

2Γ1 cos(γ1), y1 =
√

2Γ1 sin(γ1),

x2 =
√

2Γ2 cos(γ2), y2 =
√

2Γ2 sin(γ2), (17)

where y is identified as the coordinate and x is the conjugate
momentum. After some manipulation, the resonant Hamiltonian
reads:

Hres = −(αx1 + βx2) cos(θ) + (αy1 + βy2) sin(θ). (18)

At this point, the Hamiltonian (18) is ready for yet another
change of variables. In particular, we introduce the rotation for-
mulated by Henrard et al. (1986); Wisdom (1986)

u1 =
αx1 + βx2√
α2 + β2

, v1 =
αy1 + βy2√
α2 + β2

,

u2 =
βx1 − αx2√
α2 + β2

, v2 =
βy1 − αy2√
α2 + β2

· (19)

The canonical nature of this transformation can be verified by the
Poisson bracket criterion {vi, u j}(y j,x j) = δi, j (Morbidelli 2002).
Upon doing so, we can immediately identify v as the coordinate
and u as the conjugated momentum.

Defining implicit action-angle polar coordinates (Φ, φ) as

u =
√

2Φ cos(φ), v =
√

2Φ sin(φ), (20)

we can re-write the expression for the Hamiltonian (18) in a sub-
stantially simplified form:

Hres = −

√
α2 + β2

√
2Φ1 cos(φ1 + θ). (21)

Note that the Hamiltonian (21) does not depend on φ2.
Additionally, recall that effectively, the Keplerian
Hamiltonian (13) only depends on Θ. Evidently, the newly
defined action Φ2 is another constant of motion and the number
of degrees of freedom of H has been reduced to two. Reverting
to the original variables, the conservation of Φ2 implies that

e2
1β
′2 + e2

2α
′2 − 2e1e2α

′β′ cos($1 −$2) = const. (22)

where α′ = α
√

[Λ]2 and β′ = β
√

[Λ]1.
We are only one degree of freedom away from integrabil-

ity. Fortunately, the final reduction is arguably the simplest.
However, before proceeding to the final transformation, let us

briefly digress and rescale the total Hamiltonian. An exami-
nation of the expressions (13) and (21) reveals that currently,
H is parameterized by α, β, [h]1 and [h]2. Following Henrard &
Lemaitre (1983), we wish to combine these values into a single
parameter, δ̂ (not to be confused with the Kronecker delta, δi, j).

Rescaling the actions and the Hamiltonian (while retaining
the angles as before) by a constant factor η, such that

K ′ → K/η,

Θ′ → Θ/η,

Φ′1 → Φ1/η,

Φ′2 → Φ2/η, (23)

we shall require that the constant in front of the Θ′2 term in (13)
be the same as the constant in (21). In order for this transfor-
mation to remain canonical, we must also divide H by η. The
expression for the scaling factor is:

η =

(
4(α2 + β2)

9([h]1(k − 1)2 + [h]2k2)2

)1/3

· (24)

Choosing to measure time in units of 3([h]1(k − 1)2 + [h]2k2)/2,
which in turn allows us to again divideH by the same factor, we
obtain an elegant expression for the scaled total Hamiltonian:

H = δ̂Θ′ − Θ′2 −

√
2Φ′1 cos(φ1 + θ). (25)

Accordingly, the parameter δ̂ reads:

δ̂ =
2[h]1(k − 1)K ′

([h]1(k − 1)2 + [h]2k2)
· (26)

We now return to the issue of the final canonical transformation.
The change of variables we are after is given by the following
generating function of the second kind:

F2 = θΩ + (φ1 + θ)Ψ1 + (φ2 + θ)Ψ2. (27)

Taking the appropriate derivatives as above, we obtain our final
action-angle variables:

Ψ1 = Φ′1, ψ1 = φ1 + θ,

Ψ2 = Φ′2, ψ2 = φ2 + θ,

Ω = Θ′ − Ψ1 − Ψ2, ω = θ. (28)

Upon conversion to these variables, we arrive at an integrable
one degree of freedom Hamiltonian:

H = δ̂(Ω + Ψ1 + Ψ2) − (Ω + Ψ1 + Ψ2)2 −
√

2Ψ1 cos(ψ1). (29)

Indeed, the newly defined angle ω is no longer present in the
Hamiltonian (29), rendering Ω our last constant of motion. An
examination of the expressions for Ω andK reveals that the total
angular momentum of the (planar) system, L, is given by

L ' m1

√
GMa1

1 − e2
1

2

 + m2

√
GMa2

1 − e2
2

2

 = η(Ω +K ′)·

(30)

Furthermore, it is relevant to note that the planar angular mo-
mentum deficit,A, which is conserved far away from mean mo-
tion resonances (i.e. in the secular domain – see Laskar 1997) is
conveniently given by

A = Γ1 + Γ2 = η(Ψ1 + Ψ2). (31)
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Table 1. Adopted orbital parameters of the systems considered in this work.

System M? (M�) m1 (MJup) m2 (MJup) a1 (AU) a1 (AU) e1 e2 $1 (deg) $2 (deg) λ1 (deg) λ2 (deg)

HD 82943 1.15 2.01 1.75 0.752 1.190 0.42 0.14 122 130 119 122
HD 45364 0.82 0.19 0.66 0.681 0.897 0.17 0.1 162 7 106 270

Notes. The fits to radial velocity data for HD 82943 (2:1 resonance) and HD 45364 (3:2 resonance) were taken from Fit II of (Lee et al. 2006),
although the planetary masses correspond to Fit I, and (Correia et al. 2009) respectively. It is implicitly assumed that the system is coplanar and
the minimum masses derived from the data are representative of the real planetary masses. Although it is understood that different but equally
permissible fits to the data can be found, here we retain the quoted values, as we only wish to use the systems as illustrative examples. Moreover,
we note that (at least in the case of HD 82943) the quoted elements are represented in Jacobi coordinates, although in practice, their interpretation
as Poincaré coordinates only introduces negligible errors.

At first glance, the transformation (28) may appear odd, because
of the implicit choice to introduce the constant of motion Ψ2 ex-
plicitly into the Hamiltonian. However, this selection is deliber-
ate and will turn out to be useful in the next section, where it will
be shown that the conservation of Ψ2 is destroyed when higher-
order interactions are taken into account (accordingly, the inte-
grability of the Hamiltonian (29) is also compromised at higher
order).

As already mentioned above, the Hamiltonian (29) is equiv-
alent to the widely-discussed second fundamental model of
resonance (Henrard & Lemaitre 1983; Peale 1986; Murray &
Dermott 1999, and the references therein) and is therefore
closely related to the pendulum model for resonance (Peale
1976; Yoder 1973). In other words, the dynamics of the unre-
stricted resonant problem exhibits qualitatively similar behavior
to the broadly studied restricted problem, although the physical
meanings of the involved variables are different.

An important distinction is that in the context of the
Hamiltonian (29), the proximity to exact resonance is not given
as a single parameter (as it is in the context of the restricted
problem), but rather a combination of K ,Ω and Ψ2. That said,
it should be noted that K and Ω dictate the angular momentum
surface on which the dynamics resides, while Ψ2 is related to the
initial conditions of the system confined on such a surface. Thus,
it makes sense to treat Ψ2 as an effective measure of proximity
to exact resonance, given fundamental parameters of the system.

Level curves of the Hamiltonian for values of K and Ω that
correspond to the HD 82943 entry in Table 1 (Mayor et al. 2004)
and various values of Ψ2 are presented in Fig. 3. The curves on
the panels correspond to different energy levels and are color-
coded in order to highlight the distinct nature of the dynamics
they entail. Specifically, the black and blue curves denote res-
onant and nonresonant trajectories respectively, while the gray
curves on panels A, B and C denote critical curves that separate
the resonant and nonresonant regions of the phase space. Note
that the presence of the gray curves depends on the value of Ψ2
that characterizes the plot. For instance, the orange curve on
panel D describes libration in absence of a critical curve. Fixed
points of the Hamiltonian are marked with black dots, where
filled circles correspond to stable equilibria and the converse is
true for open circles. A more detailed discussion of the motion
described by these dynamical portraits and how they relate to the
envisioned behavior of the orbits is presented below.

2.2. A Geometrical representation of resonant dynamics

Armed with an integrable approximation to resonant motion, we
may now take advantage of the various integrals identified above
in order to formulate a geometrical representation of the orbital
evolution. As a result of the numerous canonical transformations
employed in the derivation of the Hamiltonian (29), the final

variables (28) are rather serpentine. Consequently, here we shall
opt to obtain the solutions as shown above, but subsequently
work backwards through the transformations in order to repre-
sent the resonant behavior in terms of the Keplerian elements.

We begin by defining the representative plane. As already
mentioned in the discussion of transformation (12), the actual
values of the semi-major axes determine the timescale on which
resonant perturbations occur, rather than the form of the inter-
actions themselves (Murray & Dermott 1999). We can therefore
use the conservation ofK to introduce the semi-major axis ratio,
a1/a2 as our first independent variable.

Keeping in mind that the problem we consider is effec-
tively planar, it is natural to turn to the definition of the angu-
lar momentum, L, for further development. Upon substitution
of the definition of K and a1/a2 into Eq. (30), the conservation
of L yields one of the eccentricities as a second independent
variable.

Because the variables (Ψ, ψ) implicitly originate from the
definition of the vectors (x, y) given by Eqs. (17), they encom-
pass information about the planetary eccentricities as well as
the difference in the longitudes of perihelia. Accordingly, a fi-
nal requirement for the delineation of parameter space in ques-
tion is a condition on the apsidal angles of the orbits. Clearly,
the full time-evolution of the resonant dynamics requires a
three-dimensional manifold, defined by (a1/a2, e1 or e2,∆$).
However, a suitable representation of the dynamics can still be
obtained by constructing a surface of section, choosing ∆γ =
(0,±π) as an intersection plane1. Importantly, in our section, we
shall not discriminate based on the direction of the trajectory’s
encounter with the ∆γ = (0,±π) plane. As will become clear
below, this choice allows us to readily distinguish between apsi-
dally librating and circulating orbits.

To summarize the above discussion, we choose to represent
the resonant dynamics on a (a1/a2, e cos(∆γ) = ±e) surface of
section. As expository examples, Figs. 4 and 5 depict such sec-
tions, roughly corresponding to the 2:1 resonant dynamics of the
HD 82943 system (Mayor et al. 2004; Lee et al. 2006) and the
3:2 resonant dynamics of the HD 45364 system (Correia et al.
2009; Rein et al. 2010) respectively. The two panels in each fig-
ure show both, e1 and e2 for completeness, although as men-
tioned already, this is a redundancy, and upon examination it is
clear that the two figures are a simple vertical rotation away from
each other.

Both of the planetary systems we use as examples here were
detected by the radial velocity technique, and are comprised

1 Note that the original perturbation Hamiltonians (2) and (4) are sub-
ject to D’Almbert rules, which physically imply invariance under rota-
tion of the reference frame (Morbidelli 2002). Consequently, only the
difference of the perihelia, ∆γ is physically sensible, not the values of
the angles themselves.
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Fig. 3. Level curves of the Hamiltonian (29). The plotted energy levels correspond to the Hamiltonian characterized by the mass-ratio and angular
momentum equivalent to that of the 2:1 resonant HD 82943 system (see Table 1 as well as Fig. 4). The four dynamical portraits depicted in
panels labeled A) B) C) D) exhibit different proximities to exact resonance. Specifically, the associated values of Φ2 are A) Φ2 = 1.6 × 10−4;
B) Φ2 = 4.8 × 10−4; C) Φ2 = 9.6 × 10−4; D) Φ2 = 1.12 × 10−3. Note that the dynamical portraits shown in panels A), B) and C) feature the
presence of separatrcies, shown as thick gray curves. The separatrix disappears in panel D), although libration of the critical angle is still possible,
as depicted by the thick orange circle. Note the factor of two reduction in the axes ranges between panels A) and B) and C) and D).

of giant planets around Sun-like stars. Notably, the masses of
the planets are comparable (m2/m1 ' 0.9 for HD 82943 and
m2/m1 ' 3.5 for HD 45364, see also Fig. 2) preventing a de-
scription of the dynamics within the context of the restricted
three-body problem. While it is firmly established that both
of these systems are indeed resonant, some uncertainties ex-
ist in the orbital fits to the radial velocity data (see Lee et al.
2006; Rein et al. 2010). We reiterate that for the purposes of
this work, we shall only use these planetary pairs as illustra-
tive examples, with little desire to quantify the exact nature of
their dynamics. Furthermore, having picked a mass ratio and

an angular momentum surface, we shall survey other parame-
ters (e.g. orbital energy, values of Ψ2) freely in order to epito-
mize an approximate yet global, rather than a precise but delim-
ited picture of the dynamics. As a baseline, we shall adopt the
(long-term stable) orbital solutions of Lee et al. (2006) for HD
82943 (specifically, Fit 2) and Correia et al. (2009) for HD 45364
(listed in Table 1 for convenience), ignoring the possibility that
improved fits to the data may yield somewhat different orbits.

Within the context of each section presented in Figs. 4 and 5,
an admissible region can be defined by the conservation of L,
along with the requirement that the eccentricities remain real.
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Fig. 4. Geometrical representation of the resonant dynamics. As in Fig. 3, the mass-ratio and angular momentum are chosen to be equivalent to that
of the 2:1 resonant HD 82943 system (see Table 1). The two panels depict the surfaces of section of the dynamical evolution with respect to ∆γ,
taken at ∆γ = 0,±π. As described in the text, showing both e1 and e2 is redundant and from the figures it can be understood that the two surfaces of
section are a simple rotation away from each-other. In both panels, the permissible region is defined by a combination of the constants of motion
K & Ω and is in essence dictated by the angular momentum of a given system. Contours of Ψ2 are shown as black lines and the background color
is indicative of the value of Ψ2. Namely, the dark blue region corresponds to a Ψ2 minimum. For each plotted value of Ψ2, the separatrix is mapped
onto the figure using white dots. Maximal libration amplitudes for Ψ2 levels that allow for the existence of a critical curve are traced along the
corresponding contours with thick black lines. Maximal pseudo-resonant libration widths (i.e. those coresponding to Ψ2 levels that do not allow
for the existence of separatricies) are shown as thick orange lines and are bounded by yellow (caution: these points may appear green on some
monitors and/or printers), rather than white dots. The Ψ2 contours labeled A B C D parallel the dynamical portraits depicted in Fig. 3. The green
vertical lines show constant energy levels. The approximate location of the separatrix of the neighboring 3:2 mean motion resonance is shown as
a red curve. The (Lee et al. 2006) fit to the radial velocity data is shown with a gray line. The dashed white line depicts the initial condition of the
system considered in Sect. 3.2.

The admissible regions are delineated by bounding orange lines.
Meanwhile, straight vertical lines depict the nominal semi-major
axes of the shown resonances.

In addition to K and L, the Hamiltonian (29) is character-
ized by conservation of Ψ2. Consequently, within the admissible
region, the dynamics must reside on contours of Ψ2. These con-
tours are shown as black lines with the background color indi-
cating the values (dark blue stands for Ψ2 = 0). Note that for the
nominal value of a1/a2, each contour of Ψ2 is intersected twice.
For some contours (i.e. those below level A on Fig. 4) both in-
tersections take place at ∆γ = ±π. This means that the dynamics
that reside on this Ψ2 level are characterized by anti-aligned li-
bration of the periapsis. For other levels of Ψ2, (e.g. level B of
Fig. 4), one intersection occurs for ∆γ = 0 and one for ∆γ = ±π.
This implies that the dynamics is characterized by circulation
of the difference of the periapses. Finally, for higher levels of
Ψ2, (e.g. level C on the same figure), both intersections occur at
∆γ = 0, implying that the dynamics is characterized by aligned
apsidal libration.

For each combination ofK ,L and Ψ2, there exists an energy
level that separates librating and circulating orbits. Accordingly,
such energy levels correspond to the maximal attainable libra-
tion widths and thereby define the resonant domain in parame-
ter space (Morbidelli 2002). Examples of such energy levels are

shown as gray curves in panels A, B, C and as an orange curve in
panel D of Fig. 3. If an energy level of this sort describes an or-
bit that passes through a hyperbolic fixed point, (shown as open
circles on panels A, B and C of Fig. 3), such an energy level is
referred to as a separatrix or a critical curve.

Strictly speaking, resonant orbits are exclusively those that
reside within the croissant-shaped domain encompassed by the
separatrix (see for example Delisle et al. 2012) e.g. the black
curves in panels A, B, C in Fig. 3. Conversely, if regions of
phase-space occupied by librating and circulating orbits are sep-
arated by a regular curve (such as the orange curve in panel D
of Fig. 3), none of the trajectories (even librating ones) are
technically resonant, although numerous authors including our-
selves (e.g. Poincaré 1902; Henrard & Lemaitre 1983; Batygin
& Morbidelli 2013) have loosely used resonance and libration
as synonyms. While in certain applications, this mixing of def-
initions does not pose significant problems, here, in interest of
avoiding confusion, we shall refer to libration in absence of sep-
aratrix as a pseudo-resonance and retain the strict definition for
true resonant motion.

The boundary of the resonant domain is represented in
Figs. 4 and 5 by white points along contours of Ψ2, while
the pseudo-resonant domain is bounded by yellow points. In
other words, regions confined by white points and shown as
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Fig. 5. Surfaces of section of the 3:2 resonant dynamics of the HD 45364 system.The meanings of the plotted curves are identical to those
described in Fig. 4. However, the gray curve corresponds to the radial velocity solution of Correia et al. (2009). The same solution, at various
levels of approximation is depicted in Fig. 6.

thick black curves, correspond to true separatricies such as those
shown in panels A, B and C of Fig. 3. The regions confined by
yellow points and shown as thick orange curves correspond to
regular trajectories that separate libration and circulation. These
points depict sections of the dynamics at ψ1 = π. Accordingly,
from Fig. 3, it is clear that resonant and pseudo-resonant orbits
intersect the ψ1 = π line twice, as opposed to circulating orbits
that intersect the ψ1 = π line only once2.

Note the deliberate parallel between curves labeled A, B, C,
D in Fig. 4 and the panels in Fig. 3). Indeed, the two figures
represent the same dynamics, depicted in different spaces. The
concave part of Ψ2 contours, residing to the right of the reso-
nant domain in Figs. 4 and 5 (shown as thin black lines) can be
identified as the inner circulation region shown in panels A, B,
and C of Fig. 3, while the parameter space to the left of the res-
onant domain respectively corresponds to the outer circulation
region. Of course, the inner circulation region disappears along
with the separatrix. Consequently, the separatrix disappears on
a level of Ψ2 where the right hand side of the thick black curve
reaches the rightmost extreme of the Ψ2 contour. Because the
two thick black curves on the upper and lower sides of the Ψ2
contour are symmetric, the disappearance of the separatrix can
be understood as taking place when the right-hand sides of two
such curves join. Specifically, the curve labeled C in Figure 4 is
close to such a transition.

Recall that together, K , L and Ψ2 constitute a measure of
proximity to exact resonance. Indeed, once defined, we have all
the ingredients to construct phase-space diagrams such as those
shown in Fig. 3. Bearing in mind that each trajectory that re-
sides on such a diagram is characterized by its energy level, we

2 Inner circulators can exhibit an apparent libration of ψ1 around 0 (see
Fig. 3). In this case, section is made with the ψ1 = 0 axis on the left side
of the stable equilibrium point.

identify the value of H itself as the final geometrical constraint
on the dynamics. Contours of H , evaluated at ∆γ = (0,±π) and
sectioned at ψ1 = π, are shown as green lines on the surfaces
of section. Importantly, the intersections ofH contours with Ψ2
contours depict the resonant libration width of a given configura-
tion. Notice the inherent shape ofH : some contours are concave,
while others are convex.

The best-fit orbital solutions of Lee et al. (2006) and Correia
et al. (2009) are shown on the surfaces of section using white
points connected by gray lines. Both solutions reside deep
within the resonance signaling qualitative agreement of the inte-
grable model with the true rendition of the dynamics. However,
quantitatively, one should not expect the agreement between
real resonant dynamics and the integrable approximations to
be particularly good, because the convergence of the perturba-
tion series employed here is questionable at best (especially at
moderate eccentricities, provided that the orbits may intersect).
Additionally, one should keep in mind the fact that thus far, we
have neglected any terms in the disturbing function of order e2

or greater, further spoiling the approximation3.
Figure 6 illustrates a comparison between the dynamical

evolution of the (Correia et al. 2009) fit obtained by numerical
integration of Hamiltonian (1) (shown as black lines) using the
mercury6 integration package (Chambers 1999) and the analyt-
ical solution that arises from the approximate Hamiltonian (29)
(shown as red lines). The panels A, B and C depict the time evo-
lution of the resonant angle θ+γ1 = 3λ2−2λ1−$1, the difference
of the apsidal angles, ∆$ and the eccentricities respectively.

3 Note that Fig. 4 shows the HD 82943 system in a state apsidal cir-
culation whereas Lee et al. (2006) observe anti-aligned libration for the
same system. In addition to the errors inherent to the approximations
involved, this difference may also stem from our usage of slightly dif-
ferent planetary masses.
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Fig. 6. Dynamical evolution of the Correia et al. (2009) resonant fit at
various levels of approximation. The black curve corresponds to the so-
lution obtained with numerical N-body integration software (that is by
direct integration of the Hamiltonian (1)). The red curves are given by
the integrable Hamiltonian (29). The purple curves depict the dynamical
evolution derived from the nonintegrable Hamiltonian (48). Following
Correia et al. (2009), panel A shows the evolution of resonant argument
3λ2 − 2λ1 − $1. Panel B shows the evolution of the apsidal angle ∆γ.
Panel C shows the eccentricities as functions of time. The evolution of
the second resonant argument, 3λ2 −2λ1 −$2, can be re-constructed by
combining the evolution of 3λ2 − 2λ1 −$1 with that of ∆γ.

Clearly, the characteristic frequencies of the oscillations differ
by a factor of a few, however the amplitudes are well captured
within the context of the approximate model.

3. The onset of chaos

3.1. Overlap of mean motion resonances

The orbital architecture of small bodies in our solar system high-
lights the fact that resonances may exhibit both, regular and
highly chaotic motion. In particular, while Neptune’s external

3:2 and 2:1 mean motion resonances are densely populated with
Kuiper belt objects (Morbidelli et al. 2008), Jupiter’s interior 2:1
and 3:1 resonances, that coincide with Kirkwood gaps of the as-
teroid belt are cleared out. The removal of resonant asteroids is
now understood to be a result of chaotic diffusion that drives
asteroids onto Mars-crossing orbits (Wisdom 1985; Henrard &
Lemaitre 1987; Henrard & Caranicolas 1990). The same ratio-
nale is applicable to the unrestricted problem we address here.

It is well known that overlap among neighboring resonant
domains gives rise to chaotic diffusion (Walker & Ford 1969;
Chirikov 1979; Wisdom 1980). Consequently, the approximate
(strictly periodic) model derived above is of virtually no use
to the description of energy levels that allow the correspond-
ing orbits to penetrate neighboring resonances. In other words,
the domain of applicability of the integrable model is in part
determined by a given trajectory’s proximity to a neighboring
separatrix.

Although there is no reason why all separatricies should lie
on the same energy level (in fact they don’t), it can be seen in
Figs. 4 and 5 that the resonant and pseudo-resonant domains are
approximately bounded by the transition between concave and
convex energy levels. This similarity can be taken advantage of,
to map the approximate locations of the neighboring resonances.
This portrayal of the onset of chaos is by no means intended to be
precise and is strictly speaking heuristic since the separatricies
are obtained by sectioning each resonant dynamics relative to
different critical angles, even if they lie on the same angular mo-
mentum surface. However, we do not view this as a significant
drawback, since the Chirikov resonance overlap criterion is in
itself an approximation that neglects the coupling of the reso-
nances and the resulting deformation of their shape, as well as
the generation of higher order secondary resonances (that act to
expand the size of the chaotic zone).

As an example, consider the level of Ψ2 adjacent to the
Correia et al. (2009) orbital solution shown in Fig. 5. While
it was shown in the previous section that the orbital fit itself
(roughly corresponding by the second inner most energy level) is
moderately well represented by the analytical Hamiltonian (29)
(see Fig. 6), we can anticipate that the same will not be true of
the solution characterized by the second outermost energy level,
since the orbit resides in close proximity to the separatricies of
the 3:2 and the 4:3 resonances.

A straight forward way to account for the effects of both,
the 3:2 and the 4:3 mean motion resonances is to construct a
Hamiltonian of the form

H = H
(0)
kep +H

(3:2)
res +H

(4:3)
res + O(e2, i2), (32)

where the Keplerian term is given by Eq. (7) and the two reso-
nant contributions each take the form of Eq. (8), with k = 3, 4
and appropriately chosen coefficients, fres (note that choosing to
not expand the Keplerian Hamiltonian around any nominal res-
onant location further contributes to the nonlinearity of the sys-
tem and acts to expand the chaotic zone). Such a Hamiltonian
possesses four degrees of freedom and four harmonics hindering
further simplification. As a result, we integrate the equations of
motion that result from the Hamiltonian (32) using conventional
numerical methods.

The resulting solution exhibits rapid dynamical chaos, as is
made evident by the eccentricity and semi-major axis ratio evo-
lution shown in Fig. 7 with blue lines. Indeed, the timescale for
the onset of irregularity is comparable to the orbital timescale.
We have repeated the numerical experiment with an N-body
simulation as above and confirmed the fully chaotic nature of
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Fig. 7. Chaotic evolution of a 3:2 resonant system at differing levels
of approximation. Panels A) and B) show the orbital eccentricities and
the semi-major axis ratio respectively. The initial conditions of the de-
scribed system correspond to the same level of Ψ2, as that of the Correia
et al. (2009) fit. However, the energy level is chosen such that the mo-
tion overlaps the 4:3 resonance. Specifically, the second outermost en-
ergy level, plotted in Fig. 5 is considered. As in Fig. 6, the black curve
corresponds to the result of a numerical N-body integration. Within the
context of the N-body solution, the planets reverse order shortly af-
ter the beginning of the integration and subsequently suffer a mutual
collision after ∼40 years of dynamical evolution. The blue curve rep-
resents the results obtained by numerical integration of the perturbative
Hamiltonian (32), that contains both resonant arguments. The inade-
quacy of the integrable approximation (29) (plotted in red) in a chaotic
domain can easily be seen.

the configuration in question. Specifically, within the context
of the N-body simulation, the stochastic evolution comes to a
rapid end ∼40 years into the integration, when the planets col-
lide. The N-body results are shown in the figure with black lines.
Meanwhile, the analytical model given by the Hamiltonian (29)
predicts regular oscillations for the same configuration, as can
be gauged from the red lines shown in the figure.

Here we have chosen a somewhat extreme example to
demonstrate planetary chaos. However, this exercise highlights
the dangers and the associated care that must be taken during ap-
plication of the simple model described in the previous section.

3.2. Secular modulation of resonant motion

Let us now turn our attention to a region of the resonant do-
main that is well-separated from the neighboring mean mo-
tion resonances. Over a sufficiently short period of time (which
is related to the timescale on which resonant interactions ex-
change energy and angular momentum between the orbits),
the Hamiltonian (29) provides a suitable approximation to the

motion. However, if we wish to characterize the behavior of the
system over a longer (secular) timescale, we are forced to retain
additional terms in the disturbing function (Laskar 1996). This
is due to the fact that characteristic resonant frequencies are pro-
portional to ∝

√
m/M while secular frequencies are proportional

to ∝m/M, giving rise to an inherent separation of timescales
between the integrable Hamiltonian and the secular correction
(Henrard & Caranicolas 1990).

As such, we extend our perturbation series to account for
second-order secular coupling of the orbits4:

H ' Hkep +Hres +Hsec + O(e2, i2), (33)

where in terms of Keplerian orbital elements (Murray & Dermott
1999),

Hsec = −
Gm1m2

a2

(
f (1)
sec

(
e2

1 + e2
2

)
+ f (2)

sec e1e2 cos($1 −$2)
)
. (34)

As before, we shall evaluate Hsec at nominal semi-major axes,
rendering fsec constant coefficients that depend on the semi-
major axis ratios only. It should be noted that Hsec does not
provide the only secular contribution to the dynamics at second
order in e. Resonant terms at second order in e, once averaged
over a libration or a circulation cycle of ψ1, also give rise to pure
secular terms that can be as large as those given in (33). Here,
we opt to discard such terms for the sake of simplicity, espe-
cially given that our aim is merely to demonstrate the qualitative
impact of secular terms (that is the generation of chaos) on the
integrable approximation developed above.

Following the same procedure outlined in the derivation of
the resonant Hamiltonian, we first revert to Poincare action-
angle coordinates. The secular Hamiltonian now takes the form:

Hsec = −2µΓ1 − 2σΓ2 − 2ν
√

Γ1Γ2 cos(γ2 − γ2), (35)

where

µ =
G2Mm1m3

2

[Λ]2
2

f (1)
sec

[Λ]1
,

σ =
G2Mm1m3

2

[Λ]2
2

f (1)
sec

[Λ]2
,

ν =
G2Mm1m3

2

[Λ]2
2

f (2)
sec

√
[Λ]1[Λ]2

· (36)

It is noteworthy that Hamiltonian (35) depends only on a sin-
gle harmonic and can thus be easily transformed into a one
degree of freedom Hamiltonian, recognizing the angular mo-
mentum deficit, A, as a secular constant of motion. Indeed, in
isolation, Hsec is integrable and the solution is referred to as
the Laplace-Lagrange secular theory (Murray & Dermott 1999).
Upon employing the transformation to eccentricity vectors given
by Eqs. (17), the linear nature of the equations of motion that
arise fromHsec becomes apparent:

Hsec = −µ(x2
1 + y2

1) − σ(x2
2 + y2

2) − ν(x1x2 + y1y2). (37)

4 For k:1 type resonances, asymmetric resonant librations are possible
(Beauge 1994; Ketchum et al. 2013). Consequently, for certain combi-
nations of parameters, the phase-space portrait of the 2:1 mean motion
resonance may be topologically different from that shown in Fig. 3.
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An application of the canonical rotation transformation (19) con-
vertsHsec into a more cumbersome form:

Hsec =
(
α2 + β2

)−1 (
−

(
u2

1 + v2
1

) (
α2µ + αβν + β2σ

)
−

(
u2

2 + v2
2

) (
α2σ − αβν + β2µ

)
+ (u1u2 + v1v2)

(
α2ν + 2αβ (σ − µ) − β2ν

))
. (38)

Finally, combining transformations (20) and (28), and rescaling
the time as above, we can express the full Hamiltonian as:

H = δ̂ (Ω + Ψ1 + Ψ2) − (Ω + Ψ1 + Ψ2)2 −
√

2Ψ1 cos(ψ1)

− 4
(
3η

(
α2 + β2

) (
[h]1(k − 1)2 + [h]2k2

))−1

×
(
α2 (µΨ1 + σΨ2) + β2 (σΨ1 + µΨ2) + αβν (Ψ1 − Ψ2)

−
(
α2ν − β2ν + 2αβ (σ − µ)

) √
Ψ1Ψ2 cos (ψ1 − ψ2)

)
. (39)

The Hamiltonian (39) is characterized by two degrees of free-
dom, and as will become apparent shortly, exhibits chaotic
motion. This implies that no canonical transformation can be
found to identify additional constants of motion. However, prior
to working with Eq. (39), it is worthwhile to examine the
timescales on which the two degrees of freedom evolve, and
identify the relevant regimes of motion, corresponding to com-
mensurability and separation between the characteristic frequen-
cies. Let us fist examine the conditions for commensurability and
the generation of secondary resonances.

3.2.1. Secondary resonances

In the framework of the unrestricted resonance problem, the nu-
merical simulations of Michtchenko et al. (2008) showed that at
very low eccentricities, secular and resonant angles can evolve
on comparable timescales, giving rise to secondary resonances.
With an integrable approximation to resonant motion in hand,
we can examine the criteria for the appearance of secondary res-
onances analytically. More specifically, we shall aim to find con-
ditions under which the period of resonant libration is close to a
low-order integer ratio with the apsidal period.

To estimate the former, we expand Hamiltonian (29) as
Taylor series in (Ψ1, ψ1) to second order, around the resonant
equilibrium point, ([Ψ]1, π). Dropping constant terms, and defin-
ing the variables
Ψ̄1 = Ψ1 − [Ψ]1 ψ̄1 = ψ1 − π, (40)

we have:

H = −

√
2[Ψ]1

2
ψ̄2

1 +

(
δ̂ − 2 ([Ψ]1 + Ψ2 + Ω) +

1
√

2[Ψ]1

)
Ψ̄1

−

1 +

√
2

8
√

([Ψ]1)3

 Ψ̄2
1. (41)

As long as the barred quantities remain small (that is, the system
does not deviate away from equilibrium much), this simplifica-
tion directly implies nearly-constant eccentricities and apsidal
anti-alignment of the orbits i.e. ∆γ ' π. Furthermore, because
we are expanding the Hamiltonian around a fixed point, to linear
order, dψ̄1/dt = 0, meaning

δ̂ − 2 ([Ψ]1 + Ψ2 + Ω) +
1

√
2[Ψ]1

= 0. (42)

This expression automatically defines the nominal value of the
action [Ψ]1 for a given combination of δ̂, Ω and Ψ2, while fur-
ther simplifying the Hamiltonian (41), as now only the quadratic
terms remain.

Fig. 8. Resonant libration frequency and apsidal motion frequency as a
function of [Ψ]1 ∝ e2 (see Eqs. (19) and (23)), as calculated within
the framework of Hamiltonian (29). For reference, the 3:2, 2:1 and
the 3:1 secondary resonances are labeled. Note that the condition for
appearance of secondary resonances implies low eccentricities.

Finally, after applying the transformation

Ψ̃1 = Ψ̄1

1+4
√

2 ([Ψ]1)3

4 ([Ψ]1)2


1
4

ψ̃1 = ψ̄1

 4 ([Ψ]1)2

1+4
√

2 ([Ψ]1)3


1
4

, (43)

Hamiltonian (41) reduces to that of a harmonic oscillator:

H = −
1
2

√
21/2 + 8 ([Ψ]1)3/2

23/2 ([Ψ]1)

(
ψ̃2

1 + Ψ̃2
1

)
=
ϕres

2

(
ψ̃2

1 + Ψ̃2
1

)
. (44)

where ϕres is immediately identified as the resonant libration
frequency.

By working back through the canonical transformations out-
lined in the previous section, it can be easily shown that be-
cause dψ̄1/dt = 0 to leading order, the average apsidal frequency
coincides with that of the cyclic angle ψ2. An application of
Hamilton’s equations yields

dψ2

dt
= δ̂ − 2 ([Ψ]1 + Ψ2 + Ω) = −

1
√

2[Ψ]1
, (45)

where the latter equality follows from Eq. (42).
Equating the two frequencies, we find that the 1:1 secondary

resonance only exists in the unphysical limit of [Ψ]1 → 0, which
corresponds to null eccentricities. However, higher order sec-
ondary resonances are indeed permitted at low values of [Ψ]1, in
agreement with the work of Michtchenko et al. (2008) (see also
Morbidelli & Moons 1993). Figure 8 shows the two frequencies
as a function of [Ψ]1, and the 3:2, 2:1 and the 3:1 secondary
resonances are labeled for reference.

Having dropped the secular terms from the
Hamiltonian (41), we have implicitly limited the scope of
the above calculations to systems where ψ2 circulates. It is
however important to note that upon inclusion of secular terms,
libration of ψ2 is possible within a limited range of parameter
space, rendering the above calculation inapplicable. Such
configurations will be discussed in Sect. 5.

3.2.2. Adiabatic evolution

We now turn our attention away from the characteristic domain
of secondary resonances, and towards the parameter regime that
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is more typical of the exoplanetary systems discussed in the pre-
vious section. As shown in Fig. 8, low-order secondary reso-
nances are not possible if [Ψ]1 is sufficiently large. In this case,
the libration frequency of ψ1 is much higher than the circulation
frequency of the secular angle, ψ1 − ψ2. It is therefore sensible
to transform the variables accordingly and employ the separa-
tion of timescales between the two degrees of freedom to our
advantage (Henrard 1982a).

The transformation we seek is given by the generating
function

F2 = ψ1Ξ + (ψ1 − ψ2)Υ, (46)

which yields the variables
Ξ = Ψ1 + Ψ2, ξ = ψ1,

Υ = Ψ2, υ = ψ1 − ψ2. (47)

The new action-angle variables are actually somewhat more in-
tuitive than the previous. Specifically, as can be understood from
Eq. (31), Ξ = A/η is simply the re-scaled angular momentum
deficit. Meanwhile, a modulation of the action, Υ, changes the
Ψ2 contour on which the resonant dynamics resides in surfaces
of Sects. 4 and 5. In terms of the new variables, the Hamiltonian
reads:
H = δ̂(Ω + Ξ) − (Ω + Ξ)2 −

√
1 − Υ/Ξ

√
2Ξ cos(ξ)

− 4
(
3η

(
α2 + β2

) (
[h]1(k − 1)2 + [h]2k2

))−1

×
(
α2(µΞ + (σ − µ)Υ

)
+ β2 (σΞ + (µ − σ)Υ)

+αβν(Ξ − 2Υ) −
(
α2ν − β2ν + 2αβ(σ − µ)

)
×

√
Ξ/Υ − 1Υ cos(υ)). (48)

Before considering an example that highlights the onset of chaos
through secular modulation, let us reflect on the somewhat satis-
factory agreement between the N-body simulation and the an-
alytical treatment of the (Correia et al. 2009) orbital solution
shown in Fig. 6. A numerical solution of the equations of mo-
tion that arises from the Hamiltonian (48) (using the initial con-
ditions listed in Table 1) is shown with purple lines in Fig. 6. This
solution demonstrates that rather than introducing chaos, the
addition of secular terms (unsurprisingly) improves the agree-
ment between the perturbative treatment of the dynamics and
the N-body simulation. Specifically, both the amplitude and fre-
quency of oscillations in the apsidal angle ∆γ and the eccentric-
ities are decreased compared to the analytical results stemming
from the Hamiltonian (29), better matching the N-body calcu-
lations. Indeed, the introduction of higher-order terms does not
render the entire phase-space chaotic.

The dynamical portrait of a two degrees of freedom system,
cannot be represented visually in a simple fashion. However, it
is still instructive to visualize the behavior of one of the degrees
of freedom by freezing the evolution of the second degree of
freedom. In particular, here we choose to set Υ = const., υ =
0. This is especially relevant to the dynamics described by the
Hamiltonian (48) because the evolution timescales of the two
degrees of freedom are well-separated.

Maintaining a parallel with the discussion of the previous
section, Fig. 9 shows surfaces of section of the level curves of the
Hamiltonian (48), for the same values of Υ = Ψ2 as those shown
in Fig. 3. As before, black, blue and gray curves denote reso-
nant orbits, nonresonant orbits, and separatricies respectively.
Pseudo-resonant orbits are marked as orange lines and are shown
in panels A and B. As expected, these pseudo-resonant trajecto-
ries do not circle the center of the figure and therefore imply

libration. Filled black dots denote stable equilibria while open
circles mark unstable fixed points. Although Figs. 9 and 3 show
essentially the same dynamical portraits, it can be argued that
visualization in terms of the variables (47) is more instructive.

Most importantly, the phase-space portrait retains the same
location of the separatrix for all values of Υ, at the expense of in-
troducing an inadmissible region, marked by a light purple circle
centered on the origin. The inadmissible region itself is defined
by the condition Ξ 6 Υ. Recalling that Ξ is related to the angular
momentum deficit, the physical interpretation of the inadmissi-
ble region is simply the requirement that the eccentricities never
acquire a complex component: =(e) = 0. An equivalent inter-
pretation of the boundary of the inadmissible region is that it
represents a stretched out origin of the panels in Fig. 3 and thus
corresponds to e1 = e2 = 0.

An advantage of this representation is that the disappearance
of the separatrix can be easily understood to be a result of the
changes in Υ. Indeed as the value of Υ grows from panel C to
panel D, the separatrix is engulfed by the inadmissible region,
leaving only nonresonant trajectories to fill the phase-space.

With this interpretation in mind, it can be intuitively under-
stood why the introduction of secular terms into our model can
give rise to chaotic motion. Namely, while Υ is a constant of mo-
tion in the context of the Hamiltonain (29), it ceases to be con-
stant with the introduction of secular terms. Referring back to
Figs. 4 and 5, the modulation in Υ can be visualized as a vertical
translation across contours of Ψ2, while confined to a particular
energy level, denoted by green lines.

Because the evolution timescales of the two degrees of
freedom are very distinct, the distortions of the orbit in
the (Ξ, ξ) plane that result from the modulation, preserve the adi-
abatic invariant, defined as (Henrard 1982a; Neishtadt 1984):

J =

∮
Ξ dξ. (49)

Physically, the action J represents an area occupied by a given
orbit. The conservation of J thus implies that any distortion of
the orbit in the (Ξ, ξ) plane must be area-preserving. An impor-
tant exception to this principle, intimately related to the onset of
chaos, is that the conservation of J is broken when a trajectory
encounters a critical curve.

Consider an initially resonant orbit such those depicted by
black lines in Figs. 9. As long as the modulation of Υ is such
that the inadmissible region remains far from the resonant or-
bit (e.g. taking panels A and B as the extremes of the modula-
tion), the resonant region is not affected much. However, if we
consider a stronger modulation (e.g. taking panels A and C as
the extremes), it can be immediately seen that the area available
for libration may shrink during a modulation cycle. In such a
scenario, when the area of the separatrix becomes equal to the
area occupied by the trajectory, the trajectory is forced to cross
the separatrix, inevitably passing through the unstable (hyper-
bolic) equilibrium point. This marks the onset of chaotic motion.
Following along the same lines of reasoning, one may deduce
that if the separatrix disappears and reappears during a modula-
tion cycle (e.g. taking panels C and D as the extremes), a con-
siderable fraction (which depends on the modulation amplitude)
of the trajectories may be understood to be chaotic.

With a handle on the role that the conservation (or lack
thereof) of J plays, a nearly complete picture of the dynam-
ics can be gleamed by sectioning the orbit in the (Ξ, ξ) plane
and examining its evolution in the (Υ, υ) plane (Wisdom 1985;
Henrard & Caranicolas 1990). If the surface of section reveals a
closed, regular orbit in the (Υ, υ) plane, it automatically implies
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Fig. 9. Level curves of a frozen system given by the Hamiltonian (48). The energy levels are plotted in the (Ξ, ξ) plane, freezing the second (slow)
degree of freedom at Υ = const., υ = 0. Panels A)–D) are characterized by the same values of Υ (that is, Ψ2) as those shown in Fig. 3. The
inadmissible region that arises once the Hamiltonian is formulated in terms of action-angle variables (47), is shown in light purple. Otherwise, the
color scheme of the curves is the same as that shown in Fig. 3.

that J is conserved along the evolutionary path and the separa-
trix was never encountered. Conversely, if the surface of section
in (Υ, υ) plane reveals an area-filling manifold, conservation of
J is broken as the orbit repeatedly encounters a separatrix in the
(Ξ, ξ) plane (Henrard 1982a; Morbidelli 2002). Indeed the situ-
ation is quite analogous to the well-studied problem of a mod-
ulated pendulum (Elskens & Escande 1991; Bruhwiler & Cary
1989).

A surface of section of the (Correia et al. 2009) orbital solu-
tion is shown as a thick purple line in Fig. 10. The apparent regu-
larity of the observed motion raises the question if any “relative”

of the considered orbital fit, sharing the same values of H ,K
and Ω can exhibit chaos. In order to address this, we surveyed
the dynamical evolution of such orbits, characterized by differ-
ent values of Υ. A few examples of such orbits are plotted as thin
purple lines on Fig. 10. As can be gathered from the figure, the
entire phase-space available to such orbits is occupied by regu-
lar trajectories. Evidently, any secular modulation of Υ permitted
by the orbital energy and angular momentum corresponding to
the (Correia et al. 2009) fit is not large enough to drive the or-
bit through a separatrix. This is not particularly surprising, since
an examination of Fig. 5 explicitly shows that the energy level
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Fig. 10. Poincare surface of section corresponding to the energy and an-
gular momentum levels of Correia et al. (2009). Various starting values
of Υ are considered and the solutions arising from the Hamiltonian (48)
are plotted as solid lines. The thick curve corresponds to the evolution
originating from the actual (Correia et al. 2009) orbital fit. For refer-
ence, the trivial (Υ, υ) evolution of the (Correia et al. 2009) fit within
the context of the integrable Hamiltonian (29) is also shown as dashed
curve. The considered system resides sufficiently deeply within the res-
onance that the trajectories never overlap with neighboring first-order
resonances. Furthermore, as can be gleamed from the figure, the secular
modulation of the system is weak. That is, the value of Υ never under-
goes large variations. Consequently, the critical curve in the (Ξ, ξ) plane
is never encountered and the pseudo-integral J is conserved along the
trajectories. The dynamical portrait of the considered configuration is
completely regular, (within the context of the second-order expansion
of the disturbing function).

on which the (Correia et al. 2009) fit resides never approaches
the vicinity of the separatrix. In other words, the (Correia et al.
2009) orbital solution is too deep within the resonance to ex-
hibit chaotic motion. Note further that the circulation of υ seen
in Fig. 10 is fully consistent with libration of ∆$ seen in Fig. 6.
Indeed, if the asymmetry (that is controlled entirely by secular
terms) of the orbit in the (υ,Υ) plane is not large, and the value
of Υ (equivalently Φ2) remains sufficiently small (e.g. Φ2 ex-
ceeds the value corresponding to level A in Fig. 4), the angle
between the apsidal lines of the orbits remains in libration.

As already shown within the context of our discussion of res-
onance overlap, retaining the same starting level of Υ as that of
the (Correia et al. 2009) fit and pushing the initial condition to an
energy level that is close to the separatrix, will indeed result in
highly irregular motion. However, the motion will not be irregu-
lar as a result of our sought-after effect, the secular modulation.
Consequently, in order to demonstrate the onset of chaos due to
secular interactions more coherently, let us relocate our discus-
sion to the 2:1 resonance and choose a starting value of Υ and
an energy level such that the unperturbed solution lies close to
the 2:1 separatrix yet far enough away from the 3:2 separatrix
for the perturbations from the neighboring resonance to rapidly
average out.

The initial condition we shall consider lies on a contour of Υ
directly above the one labeled B in Fig. 4 and on the energy
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Fig. 11. Poincare surface of section of the 2:1 mean motion resonance.
The values of energy and angular momentum correspond to the dashed
white line shown in the HD 82943 global dynamical map i.e. Fig. 4.
Chaotic trajectories are shown with small red points while regular tra-
jectories are depicted as purple and black curves. Conservation of the
adiabatic invariant J is ensured by the separation of timescales along
the shown regular trajectories. The orbits shown in purple are charac-
terized by libration in the (Ξ, ξ) plane, while the black orbits imply cir-
culation. Unsurprisingly, the (Υ, υ) phase-space occupied by orbits that
entail libration in the (Ξ, ξ) plane are separated from those that entail cir-
culation by the projection of the (Ξ, ξ) separatrix, shown as thick brown
line. Additionally, as in Fig. 10, the unperturbed orbit derived from the
integrable Hamiltonian (48) is shown as a dashed line.

level that intersects the contour immediately inside the separa-
trix. For convenience, the unperturbed version of the starting
state in question is labeled by a dashed white line in Fig. 4.
Naturally, as can be inferred from the figure, the unperturbed
solution is characterized by large-amplitude resonant libration
in the (Ξ, ξ) plane.

Accounting for the secular terms, the evolution of this ini-
tial condition exhibits large-scale chaos. The extensive chaotic
sea occupied by the solution is shown with opaque red points in
the Poincare surface of Sect. 11. However, the phase-space por-
trait is not entirely occupied by irregular trajectories. A survey
of initial conditions permitted by the values of energy and angu-
lar momentum reveals the existence of quasi-periodic solutions
as well, depicted as purple and black curves. J is conserved at
all times along these curves.

The dynamics is characterized by resonant libration in the
(Ξ, ξ) plane within the regular region on the inside of the chaotic
zone (corresponding to purple curves in Fig. 11) and by circula-
tion in the (Ξ, ξ) plane on the outside of the chaotic zone (cor-
responding to black curves). It should be noted that the example
considered here was specifically chosen to reside in close prox-
imity to the separatrix. For an arbitrary choice of initial condi-
tions, even if the chaotic zone is permissible by the conservation
of angular momentum and energy, it would likely occupy a con-
siderably smaller fraction of phase-space.

The boundary between circulation and libration is denoted
by the thick brown circle shown in Fig. 11). In other words,
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the thick brown circle is a projection of the separatrix in the
(Ξ, ξ) plane onto the (Υ, υ) plane. The attribution of the origin
of chaos to secular modulation is exemplified by the fact that
the projected separatrix hugs the boundary of the chaotic zone
on the inside as well as the outside. Thus, any secular trajectory
that crosses the projected separatrix is driven to irregularity.

It is worth noting that although any orbit that starts out within
the chaotic sea will be irregular by definition, unlike the case of
mean motion resonance overlap considered above, between en-
counters with the separatrix, the evolution will be characterized
by conservation of J and will therefore be temporarily regular.
Thus, a clear difference between the two chaotic regimes can
be established. Chaos that arises from secular modulation is de-
scribed by slow diffusion that takes place on a secular timescale,
while diffusion that arrises from the overlap of mean motion res-
onance is fast, characterized by the resonant timescale.

4. Divergent resonant encounters
An interesting and useful application of the theory formulated
above is the treatment of divergent encounters of planets with
mean motion resonances. As briefly described in the intro-
duction, capture into resonance requires convergent migration
(Borderies & Goldreich 1984; Henrard 1991). In contrast, res-
onant encounters that stem from divergent migration can never
lead to capture and instead always yield impulsive excitation of
the orbits. Here, we wish to consider the latter scenario and ad-
dress the translation of post encounter dynamics onto the secular
domain.

While studying divergent encounters with the 2:1 mean mo-
tion resonance by Jupiter and Saturn within the context of the
Nice model, Morbidelli et al. (2009) identified that the planets
always come out of the resonance locked in an apsidally anti-
aligned state. Furthermore, the apsidal alignment persists indefi-
nitely, unless it is broken by a close encounter with a transiently
unstable ice-giant. Although Morbidelli et al. (2009) attributed
the origin of the apsidal lock to a fortunious mass-ratio between
Jupiter and Saturn, here we assert that this result is largely inde-
pendent of the planetary masses.

Panels A and B in Fig. 12 show the time evolution of the
eccentricities and the difference in longitudes of perihelia where
the 2:1 mean motion resonance is encountered by Jupiter and
Saturn as well as a planetary pair with reversed masses i.e.
Jupiter residing further from the sun. The solutions are ob-
tained from numerical experiments where divergent migration
was implemented via a fictitious force. Specifically, the simula-
tions were performed using the Symba N-body integration soft-
ware package (Duncan et al. 1998), modified such that in iso-
lation, the outer orbit drifts outwards and the inner orbit drifts
inwards with the migration rate decaying as ∝exp t/τ, choosing
τ = 1 Myr (Morbidelli et al. 2009). As can be assessed from
the figure, the values of the eccentricities acquired by the plan-
ets during the resonance passage depend on the planetary mass
ratio. Yet the encounter drives the planets to an apsidally anti-
aligned state in both cases. Changing the mass ratio to unity does
not affect the results.

4.1. Pre-encounter evolution

This behavior can be readily explained in the context of the
model developed here. Let us begin by first discussing the pre-
encounter initial conditions. Because orbital migration is usually
driven by time-irreversible (effectively dissipative) processes
(e.g. interactions with the protoplanetary nebula, tidal interac-
tions, planetesimal scattering), it is natural to assume that planets
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Fig. 12. Impulsive excitation of the orbits by an encounter with the
2:1 mean motion resonance. This figure depicts the results of two nu-
merical experiments where a Jupiter-mass planet and a Saturn-mass
planet encounter a 2:1 mean motion resonance. Panel A) shows the
evolution of the eccentricities while panel B) shows the evolution of
the difference in the perihelia. In one experiment (labeled JS), Jupiter
is placed on the inner orbit. In the other numerical experiment (la-
beled SJ), Saturn resides closer to the Sun. Although the extent of ec-
centricity excitation differs between the two runs considerably, the post-
encounter apsidal alignment is clearly evident in both cases.

migrate on circular orbits. As a result, recalling the definitions of
the variables (47), we shall set the pre-encounter actions (where
planets reside far away from resonance) to Ξpre = Υpre = 0.

Next, consider the migration rate. Numerical simulations
(Tsiganis et al. 2005; Crida et al. 2007; Zhang & Hamilton 2008)
suggest that in most cases of interest, the rate of orbital mi-
gration is slow compared to the secular interaction timescale,
closely related to the evolution timescale of the acton Υ. Taking
the assumption of slow migration as a guiding principle, we are
tempted to define a second adiabatic invariant related to secu-
lar motion. However, prior to doing so, we must first examine if
the adiabatic approach is viable despite near-null eccentricities,
which we showed in the last section can lead to the appearance
of secondary resonances.

At first glance, adiabatic invariance seems impossible be-
cause the criterion given by Eqs. (44) and (45) clearly indicates
that the system should be close to the 1:1 secondary resonance
(see also Fig. 8). However, as already mentioned in the previous
section, in the limit of a vanishingly low value of Υ, the criterion
for secondary resonances must be reevaluated in light of the pos-
sibility of a librating rather than circulating υ. The procedure we
follow is essentially identical to that outlined in Sect. (3.2.1), but
in order to appropriately capture the dynamics, we must work
with a two degree of freedom Hamiltonian. Specifically, we
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shall consider a simplified version of Hamiltonian (48), where
the secular terms are dropped with the exception of the har-
monic5. Assembling the relevant constants to the secular part
of the Hamiltonian into a single constant Cs (see Eq. (48)), we
have:

H = δ̂(Ω + Ξ) − (Ω + Ξ)2 −
√

1 − Υ/Ξ
√

2Ξ cos(ξ)

−Cs
√

Ξ/Υ − 1Υ cos(υ). (50)

Upon expanding the Hamiltonian in Taylor series to second or-
der around nominal resonance in both degrees of freedom (that
is, (Ξ, ξ) is expanded around ([Ξ], 0) and (Υ, υ) is expanded
around ([Υ], 0)), we obtain the following expression:

H =

√
2

2

√
[Ξ] − [Υ]ξ̄2 +

1
2

(
1

2
√

2([Ξ] − [Υ])3/2

−
Cs
√

[Υ]
4([Ξ] − [Υ])3/2 − 2

)
Ξ̄2 −

Cs
√

[Υ]
2

√
[Ξ] − [Υ]ῡ2

−
1
2

(
Cs[Ξ]2

4[Υ]3/2([Ξ]−[Υ])3/2 −
1

2
√

2([Ξ]−[Υ])3/2

)
Ῡ2. (51)

where the barred variables are defined as the deviations away
from equilibrium (see Eq. (40) for an analogous definition). As
before, the nominal actions are given by setting the linear terms
in the above Hamiltonian to zero:

δ̂ − 2[Ξ] − 2Ω +
Cs
√

[Υ]
√

[Ξ] − [Υ]
−

1
√

2
√

[Ξ] − [Υ]
= 0,

1
√

2
√

[Ξ] − [Υ]
−
Cs
√

[Υ]
√

[Ξ] − [Υ]
+

Cs[Ξ]
2
√

[Υ]
√

[Ξ] − [Υ]
= 0. (52)

We are now in a position to convert the Hamiltonian (51) into the
form of two decoupled harmonic oscillators. However, before
doing so let us examine Eqs. (52) in greater detail. Adding the
two equations together, we can obtain an expression for [Υ]/[Ξ]:

[Υ]
[Ξ]

=
C2

s

C2
s + 4(δ̂ − 2([Ξ] + Ω))2

' [Ξ]
C2

s

2
· (53)

The latter simplification utilizes the fact that Cs � δ̂−2([Ξ]+Ω)
since the former arises from a higher order perturbation. Note
that this expression implies that [Υ]/[Ξ] is a small parame-
ter. This relationship between [Υ] and [Ξ] will prove useful
in obtaining simplified expressions for the libration frequencies
below.

Employing a change of variables of the same type as (43)
with coefficients from Eq. (51), we transform the Hamiltonian
into the desired form:

H =
ϕξ

2
(Ξ̃2 + ξ̃2) +

ϕυ
2

(Υ̃2 + υ̃2). (54)

The explicit expressions for the libration frequencies ϕξ and ϕυ
can be made simpler by expanding them to leading order in
[Υ]/[Ξ], which we showed above to be a small parameter:

ϕξ =

√ √
2 − 8([Ξ] − [Υ])3/2 − Cs

√
[Υ]

2
√

2([Ξ] − [Υ])
'

√
1

2[Ψ]1
,

ϕυ =
1
2

√
Cs(
√

2[Υ]3/2 − [Ξ]2Cs)
[Υ]([Υ] − [Ξ])

'
Cs
√

[Ξ]
2
√

[Υ]
'

√
1

2[Ψ]1
· (55)

5 Because the eccentricities are taken to be very low, retention of sec-
ular terms that are linear in the actions does not change the results in
any meaningful way, while making the already formidable algebra even
more opaque.

Evidently, the two angles, ξ and υ evolve on similar timescales.
As in the previous section, we can take advantage of this simili-
tude to easily identify an adiabatic invariant.

Let us implicitly define two sets of action angle coordinates

Ξ̃ =
√

2X̃ cos x̃ ξ̃ =
√

2X̃ sin x̃,

Υ̃ =

√
2Ỹ cos ỹ υ̃ =

√
2Ỹ sin ỹ. (56)

In these variables, the Hamiltonian (54) reads:

H = ϕξX̃ + ϕυỸ. (57)

Applying a contact transformation originating from the generat-
ing function

F2 = x̃W̃ + (ỹ − x̃)Z̃, (58)

we obtain the action-angle variables:

W̃ = X̃ + Ỹ, w̃ = x̃,
X̃ = Ỹ, z̃ = ỹ − x̃. (59)

The Hamiltonian is now explicitly adiabatic:

H = ϕξW̃ + (ϕυ − ϕξ)Z̃. (60)

Indeed, the evolution of the angle z̃ is much slower than that
of the angle w̃. This allows us to reintroduce the first adiabatic
invariant

J =

∮
W̃ dw̃. (61)

Moreover, assuming that migration occurs more slowly than the
evolution of z̃, we can define a second adiabatic invariant6

I =

∮
Z̃ dz̃. (62)

In essence, the system we are concerned with here is subject to
the double-adiabatic condition. Namely, I is conserved by con-
struction because the migration rate is taken to be sufficiently
slow and J is conserved because the two degrees of freedom
are well-separated. Although the secular phase space portrait
depicted by the Hamiltonian (48) contains no critical curves,
conservation of both, J and I is broken when a separatrix is
encountered in (Ξ, ξ) space. Consequently, the double-adiabatic
condition applies before and after, but not during the resonant
encounter. However, because the impulsive excitation of the or-
bits occurs on a resonant timescale, Υ (and equivalently, Ψ2) it-
self is conserved across the encounter.

At this point, we have enough information to show that af-
ter the resonant encounter, the orbits must be anti-aligned. Let
us begin by reasoning through the calculation of the impulsive
orbital excitation.

Throughout the evolution prior to the encounter, J = I = 0.
Note that this condition does not imply circular orbits. Instead,
it implies that the system resides on a global fixed point, nearest
to the origin.

As exact resonance is approached, the location of the fixed
point on the (Ξ, ξ) plane moves to the right (i.e. acquires a finite

6 The distinction between the first and the second adiabatic invari-
ants J and I parallels the analogous definitions employed in plasma
physics (Bellan 2006). That is, the second invariant corresponds to a
much longer timescale than that of the first, and is therefore broken
more easily.
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Fig. 13. Phase-space representation of the divergent resonant encounter.
Prior to the encounter, the system resides on the stable equilibrium point
in the vicinity of the origin. At the time of the encounter, the stable
equilibrium point and the unstable equilibrium point (on which the sep-
aratrix resides) join and the system obtains a circulational trajectory,
related to the separatrix. As the system marches further away from res-
onance, the circulating trajectory asymptotically approaches a circle,
while conserving the encapsulated area, J .

value of Ξ while remaining at ξ = 0). In other words, the ap-
proach to exact resonance can be viewed as sequential evolution
through panels A, B, C and D of Fig. 3, where the solution re-
sides on the black dot in the center of the inner circulation zone.
As the inner circulation zone contracts, the stable fixed point and
the unstable fixed move closer together in phase space.

4.2. Post-encounter evolution

The impulsive excitation occurs when the stable fixed point on
which the dynamics resides and the unstable fixed point at the
crest of the separatrix join. As long as the resonant encounter
takes place at low eccentricities, the phase-space portrait of the
system can be visualized, neglecting the second order secular
contribution. In the purely resonant framework, this occurs when
two of the roots to the cubic equilibrium equation, derived from
the Hamiltonian (29)

1 + ρ3 + 2Ωρ = δ̂ρ, (63)

where ρ =
√

2Ξ, are identical (Murray & Dermott 1999). In fact,
the bifurcation of the fixed point can be used to calculate the
exact semi-major axis ratio at which the encounter occurs. At
this point, conservation ofJ is momentarily broken and the sys-
tem obtains an orbit defined by the separatrix in the (Ξ, ξ) plane,
shown as a gray curve in Fig. 13.

Because the resonant encounter occurs “instantaneously”
with respect to the migration timescale, the orbital angular mo-
mentum must be conserved across the jump. Consequently, the
acquisition of angular momentum deficit (related to Ξ) is ac-
companied with a small jump in the semi-major axis ratio that

converts the separatrix into a similarly-shaped regular circulat-
ing orbit. The circulating, rather than librating nature of the new
orbit is ensured because during divergent migration, the phase-
space area occupied by resonant trajectories shrinks, prevent-
ing capture (Henrard 1982a; Peale 1986). Strictly speaking, this
means that the dynamics no longer resides on a fixed point in
the (Υ, υ) plane because the newly acquired angular momentum
deficit changes the dynamical portrait. Indeed, the new trajectory
in the (Υ, υ) plane envelopes the new coordinates of the fixed
point and passes through the pre-encounter equilibrium location.
However, it can be argued with some level of rigor that change in
the fixed point’s location will be small and by extension, so will
the radius of the post-encounter orbit in the (Υ, υ) plane.

First, note that neglecting second order terms, the (Υ, υ) fixed
point always resides at the origin because the Hamiltonian (29)
is independent of υ (equivalently, ψ2). This line of reasoning
is a useful starting point but is an oversimplification as it only
implies trivial secular dynamics embedded in the transforma-
tion (19). In reality (as can be seen in Fig. 10), the (Υ, υ) fixed
point resides somewhat off-center. In particular, prior to the en-
counter, the fixed point in the (Υ, υ) plane is obtained from
Eqs. (52).

After the encounter, the (Υ, υ) equilibrium point can be cal-
culated in a similar way, however, taking into account the fact
that (Ξ, ξ) no longer resides at an equilibrium point. Consider a
modified version of Eq. (52):

1
T

∫ T

0

 cos(ξ)
√

2
√

Ξ − Υ
−

Cs
√

Υ
√

Ξ − Υ
+

CsΞ

(2
√

Υ
√

Ξ − Υ)

 = 0, (64)

where T is the period required to complete a single orbit in
the (Ξ, ξ) plane. Note that the above expression simplifies to
Eq. (52b) in the limit where Ξ = [Ξ] and ξ = 0 for all t.

As already stated above, immediately after resonance cross-
ing the (Ξ, ξ) trajectory begins circulation (see Fig. 13).
However, during a single circulation cycle, the (Ξ, ξ) trajectory
spends most of its period in close proximity to the ([Ξ], 0) fixed
point, because that is where the time derivative of ξ is mini-
mal. Thus, the solution of Eq. (64) in Υ will be close to that of
Eq. (52). In other words, the equilibrium point in (Υ, υ) will not
move considerably. Consequently, the dynamics of (Υ, υ), which
was on the stable equilibrium point before the resonance cross-
ing, will describe a cycle around the new equilibrium point after
the crossing. The corresponding radius of the orbit will equal to
the displacement suffered by the equilibrium point itself, which
is small.

For all subsequent evolution, as the planets migrate away
from resonance, the conservation of both adiabatic invariants is
once again in effect. Consequently, because of the conservation
of the first adiabatic invariant J , the orbit on the (Ξ, ξ) plane
asymptotically approaches a circle centered on the origin, whose
area is given by:

2πΞ = Jseparatrix. (65)

Moreover, on the (Υ, υ) plane, the small radius of the cycle
around the equilibrium point will be maintained, thanks to the
conservation of the second adiabatic invariant, I. As long as this
equilibrium point remains close to the origin, υ may circulate,
but the smallness of Υ ensures that ∆$ librates around π (see
Υ = Ψ2 ' 0 contours in Figs. 4 and 5). In principle, as the plan-
ets move away from resonance, the (Υ, υ) equilibrium point can
move away from the origin. In this case, the small radius of the
orbit around the equilibrium point on the (Υ, υ) plane implies
that υ librates. This, again, ensures the libration of ∆$ around π.
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As a final point, it is important to comment on the results of
an additional numerical experiment reported by Morbidelli et al.
(2009). In particular, Morbidelli et al. (2009) showed that if the
masses of both, Jupiter and Saturn are reduced by a factor of 100,
the post-encounter apsidal alignment among the orbits no longer
holds. This phenomenon (although apparently contradictory to
the statements made above), can also be understood within the
context of our model. Recall that our formulation of resonant en-
counters specifically assumed the double adiabatic condition. In
the low-mass experiment considered by Morbidelli et al. (2009),
the conservation of I is broken because the migration timescale
is taken to be faster than the longest interaction timescale of the
planets. Consequently, we can expect that there exists a tentative
cut-off in mass below which apsidal alignment cannot endure.
The characteristic value of such a cutoff however is dependent on
the migration process in question and will therefore vary among
differing astrophysical settings.

5. Conclusion

In this paper, we have set out to construct a simple geometrical
representation of the global dynamics of the unrestricted, first
order resonant three-body problem. As the primary purpose of
the paper is the delineation of a comprehensive dynamical pic-
ture, we have opted to work within the context of analytically
tractable, but approximate perturbation theory.

Although first-order resonant motion can be apparently com-
plex, here, greatly aided by the pioneering works of Sessin
& Ferraz-Mello (1984) as well as Henrard et al. (1986) and
Wisdom (1986), we have shown that the essential features of the
dynamics is captured within the context of a simple integrable
Hamiltonian. The Hamiltonian in question is qualitatively sim-
ilar to that of a pendulum and more precisely, is related to the
second fundamental model for resonance (Henrard & Lemaitre
1983). This highlights a certain kinship between the unrestricted
and the restricted three-body problems, as the second fundamen-
tal model for resonance has also been applied extensively to the
study of the latter.

Quantitatively, the formulated theory is only accurate at low
eccentricities. Nevertheless, it still provides the much-needed
qualitative insight relevant to a broad range of orbital archi-
tectures. Indeed, at an age when N-body integration software
is freely available (Duncan et al. 1998; Chambers 1999) and
computational resources required for problems such as these are
abundant, the qualitative understanding that emerges from the
theory is of greater importance than the particularities of its di-
rect application. Consequently, the utility of the developed the-
ory is best envisioned as a theoretical supplement to (rather than
a replacement of) numerical N-body simulations.

Utilizing the various constants of motion that arise within
the context of the integrable theory, we have constructed a geo-
metrical characterization of the resonant motion. Indeed, global
maps of the dynamics, such as those presented in Figs. 4 and 5
provide a visual aid that allows one to instantly assess important
features of any particular resonant solution such as the proxim-
ity of the system to a separatrix or conversely the depth within
the resonance at which a given orbital fit resides. Although the
global maps (4) and (5) are restricted by the fact that they portray
surfaces of section, combined with corresponding phase-space
portraits, such as those presented in Figs. 3 and 9, a more com-
prehensive understanding of the dynamics can be obtained.

The applicability of the integrable theory is unavoidably lim-
ited. An important, well-known feature of resonant dynamics is

its capacity for chaotic motion. Because the nature of the inte-
grable model is inherently regular, in isolation, it is essentially
of no use in the chaotic domain.

In this work, we emphasized two distinct modes of the on-
set of chaos. Namely, we considered the rapid irregularity that
arises from the overlap of mean motion resonances as well as
slow chaos that arises as a result of the secular modulation of
the orbit through the separatrix. The first mode dominates in the
region of parameter space where neighboring resonant separati-
cies reside in some proximity to each other. In direct analogy
with the restricted problem, for (k:k − 1) resonances, the region
of parameter space occupied by this effect grows with increas-
ing k. Conversely, chaotic diffusion near seaparatricies that are
isolated from neghboring mean motion resonances is dominated
by secular modulation of the resonant dynamics.

It is important to recall that beyond the integrable
approximation, we only accounted for a limited number of sec-
ond order secular terms. Obviously, even after averaging out
short-period terms, the dynamics encapsulated into the residual
disturbing function is much richer than the simple model uti-
lized here. This implies that the description of the onset of chaos
is far from exhaustive. That said, the method outlined in this pa-
per, namelyintroducing an integrable Hamiltonian by freezing
the secular degree of freedom and then studying its evolution in
the adiabatic regime, is valid for arbitrary eccentricities and in-
clinations. Consequently, the largely qualitative account of the
onset of chaos presented here should be viewed as a guide to
a general methodology rather than a particular model with ex-
tended applicability.

As an application of the simple theory formulated in this
work, we addressed divergent resonant encounters between mas-
sive planets. Particularly, we showed that the natural outcome
of adiabatic resonant encounters is an apsidally anti-aligned or-
bital state. Interestingly, this result is largely independent of the
planetary masses. Moreover, the preservation of the second adi-
abatic invariant (related to secular dynamics) ensures that small-
amplitude libration around the anti-aligned fixed point persists
far away from the resonance.

As a consequence of this result, it is tempting to interpret
small-amplitude anti-aligned libration of nonresonant planets as
a signature of past resonant encounters as well as the associated
migration. Indeed, such an interpretation holds great value as an
instrument for disentangling the dynamical histories of planetary
systems. However, care must be taken when drawing any such
conclusion because eccentricity damping (such as that resulting
from the dissipative processes that drive divergent orbital migra-
tion in the first place) in the secular domain may lead to anti-
aligned orbits independently (Wu & Goldreich 2002; Mardling
2007; Batygin & Laughlin 2011). Furthermore, it is important to
note that lack of co-precessing anti-aligned obits in a given sys-
tem should not be viewed as evidence for lack of past resonant
encounters, since resonant encounters in densely populated plan-
etary systems, can lead to orbital instabilities that act to chaot-
ically erase fossilized remnants of past evolution. The lack of
apsidal alignment between Jupiter and Saturn suggests that the
solar system is in fact, such an example (Morbidelli et al. 2009;
Batygin & Brown 2010; Nesvorný & Morbidelli 2012).

Although we have solely addressed divergent resonant en-
counters here, the same model can also be applied to conver-
gent resonant encounters. As discussed above, the outcomes of
convergent encounters include both, capture into resonance as
well as capture-free orbital excitations (Henrard 1991; Lee &
Peale 2002). While the latter scenario is qualitatively similar
to the example considered here, in case of successful capture,
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post-encounter evolution can depend strongly on factors such as
the orbital migration and eccentricity dissipation rates as well
as the strength of external stochastic perturbations (Adams et al.
2008; Rein et al. 2010). Similar factors contribute to the deter-
mination of whether capture can occur in the first place (Murray
& Dermott 1999).

Consequently, astrophysically relevant analysis of conver-
gent resonant encounters within the framework of the model dis-
cussed here requires extensive, numerical validation. Owing to
the significant associated computational cost of such a project,
addressing this issue is far beyond the scope of the current
study. However, our investigation aimed at quantifying the vari-
ous regimes of convergent resonant encounters is already under-
way and will be published in a subsequent follow up study.
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